Reg No COLLEGE
REGEREE DECREE

Maximun

SIXTH SEMESTER B.TECH. (ENGINEERING) [09 SCHEME] DE EXAMINATION, APRIL 2015

EC/PTEC 09 L01—POWER ELECTRONICS

Time: Three Hours

Part A

- I. Answer all questions:
 - 1 What are the different methods for turning off a SCR?
 - 2 Mention the advantages of MOSFET over BJT.
 - 3 Define Total Harmonic Distortion (THD).
 - 4 Write down the expression for the output RMS voltage of a single phaase a.c. voltage controller with resistive load.
 - 5 What is integral cycle control?

 $(5 \times 2 = 10 \text{ marks})$

Part B

- II. Answer any four questions:
 - 6 What are $\frac{dv}{dt}$ and $\frac{di}{dt}$ ratings of a SCR ? What happens if these ratings are exceeded ?
 - 7 A 220 V, 1 kW resistive load is supplied by 220 V, 50 Hz source through a single phase fully controlled rectifier. Determine the following for 800 W output:
 - (i) Output voltage.
 - (ii) RMS value of input current.
 - (iii) Displacement factor.
 - 8 Explain the working principle of a buck-boost regulator with a neat circuit diagram.
 - 9 Explain the working principle of a step-up chopper with a neat sketch.
 - 10 Draw the circuit diagram of a bridge inverter and explain its working principle.
 - 11 List out the advantages of SMPS over linear power supplies.

 $(4 \times 5 = 20 \text{ marks})$

C 80760

Part C

Answer all questions.

Module I

12. (a) Explain the basic structure and VI characteristics of a power diode.

(10 marks)

Or

(b) What do you mean by commutation of SCR? Explain the class D commutation circuit with necessary waveforms.

(10 marks)

Module II

13. (a) Explain the operation of a single phase full bridge converter with RL load for continuous and discontinuous load current.

(10 marks)

Or

(b) For a single phase transistorized PWM half-bridge inverter derive expressions for fundamental output voltage, inverter gain and harmonic factor.

(10 marks)

Module III

14. (a) Explain the principle of operation of a single phase to single phase cycloconverter with a neat sketch.

(10 marks)

Or

(b) A step down d.c. chopper has a resistive load R=15 Ohms and input voltage $E_{DC}=200$ V. When the chopper remains ON, its voltage drop is 2.5 V. The chopper frequency is 1 kHz. If the duty cycle is 50%, determine (i) average output voltage, (ii) RMS output voltage, (iii) chopper efficiency, and (iv) effective input resistance of the chopper.

(10 marks)

Module IV

15. (a) Discuss the operation of a CUK regulator with a neat circuit diagram and relevant voltage and current waveforms.

(10 marks)

Or

(b) Explain the operation of an online UPS with a neat block diagram.

(10 marks)

 $[4 \times 10 = 40 \text{ marks}]$