

SIXTH SEMESTER B.TECH. [ENGINEERING] (09 SCHEME EXAMINATION, APRIL 2015

CE/PTCE 09 L04—COMPUTER APPLICATIONS AND OPERATION

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Give some criterion for termination of bisection method.
- 2. Given f(2) = 9, and f(6) = 17. Find an approximate value for f(5) by the method of Lagrange's interpolation.
- 3. State the algorithms of Simpson's 1/3 rule.
- 4. State the examples of eigen vectors in structural engineering problems.
- 5. Discuss the ways to generate the dual for a linear programming problem.

 $(5 \times 2 = 10 \text{ marks})$

Part B Answer any four questions.

- 6. Using Regula-Falsi method, find a real root of the equation, $f(x) = x^3 + x 1 = 0$, near x = 1.
- 7. Find $\ln 9.2$ with n=3, using Lagrange's interpolation formula with the given table:

X	9.0	9.5	10.0	11.0 2.397	
ln x	2.197	2.251	2.302		

- 8. Use the Trapezoidal rule with n = 4 to estimate $\int_{1}^{2} \frac{1}{x} dx$. Compare the estimate with the exact value of the integral.
- 9. If 0.333 is the approximate value of 1/3, find the absolute, relative and percentage errors.
- 10. Calculate the integral value of following function from x = 0 to x = 1.6 using Simpson's 1/3 rule.
- 11. Distinguish linear programming and non-linear programming problem with respect to Civil Engineering aspect.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer any four questions.

12. Solve by Jacobi's iteration method, the system of equations

$$20x_1 + x_2 - 7x_3 = 17$$

$$3x_1 + 20x_2 - x_3 = -18$$

$$2x_1 - 3x_2 + 20x_3 = 25$$

Or

13. Apply Gauss elimination method to solve the equations:

$$x+4y-z=-5$$

$$x+y-6z=-12$$

$$3x+y-z=4$$

14. Find the eigen values and the corresponding eigen vectors of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$$

Or

15. From the following table, find the value of $e^{1.17}$ using Gauss' forward formula.

X	1.00	1.05	1.10	1.15	1.20	1.25	1.30
· ex	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

16. Find an approximate value of $\log_e 5$ by calculating $\int_0^5 \frac{dx}{4x+5}$, by Simpson's 1/3 rule of integration.

Or

17. Construct the forward difference table, where f(x)=1/x, x=1(0.2)2, 4D.

18. Use the Simplex algorithm.

Maximize
$$Z = 4x_1 - x_2 + 2x_3$$

subject to $2x_1 + x_2 + 2x_3 \le 6$
 $x_1 - 4x_2 + 2x_3 \le 0$
 $5x_1 - 2x_2 - 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$.

Or

19. Solve the following LPP graphically maximum and minimize Z = 3x + 5y.

subject to constraints

$$3x - 4y + 12 \ge 0$$

$$2x - y + 2 \ge 0$$

$$2x + 3y - 12 \ge 0.$$

 $(4 \times 10 = 40 \text{ marks})$