SIXTH SEMESTER B.TECH. (ENGINEERING) (09 EXAMINATION, APRIL 2015

AI 09 601—DIGITAL SIGNAL PROCESSING

Time: Three Hours

Answer all questions.

- I. 1 Find the DTFT of $\{1,-2,2,3\}$.
 - 2 State and prove time shifting property of DTFT.
 - 3 Does $1 + \frac{1}{2}z^{-1}$ represent a IIR system? Justify your answer.
 - 4 Why is quantisation used in digital systems?
 - 5 What is meant by pipelining?

 $(5 \times 2 = 10 \text{ marks})$

70 Marks

Part B

Answer any four questions.

- II. 1 Discuss any three applications of FFT.
 - 2 Find the 4-point DFT of the sequence $x(n) = \{2,1,4,3\}$ by DIF FFT algorithm.
 - 3 Draw the direct from II structure of:

$$y(n) = -\frac{13}{12}y(n-1) - \frac{9}{24}y(n-2) + x(n) + 4x(n-1)$$
.

- 4 A prototype low-pass filter has the system function as $\frac{1}{s^2+3s+2}$. Obtain a band-pass filter with $\Omega_0 = 3 \, rad/s$ and Q = 12.
- 5 Find the filter order for the following specifications:

$$\sqrt{0.5} \le |H(w)| \le 1; \ 0 \le w \le \frac{\pi}{2}$$

 $|H(w)| \le 0.2; \le \frac{3\pi}{4} \le w \le \pi$

with T = 1 S. Use impulse invariant method.

6 Discuss the features of TMS 320 series processor.

 $(4 \times 5 = 20 \text{ marks})$

Turn over

Part C

III. (a) Compute the circular convolution of the sequences {1,2,0,1} and {2,2,1,1} using DFT approach.

Or

- (b) Find X (k) of $x(n) = \{1,2,3,4,4,3,2,1\}$ using DIT FFT algorithm.
- IV. (a) Realise the given system in cascade and parallel forms:

$$H(z) = \frac{1 + \left(\frac{1}{3}\right)z^{-1}}{\left[1 - \left(\frac{1}{2}\right)z^{-1} + \left(\frac{1}{3}\right)z^{-2}\right]\left[1 - \left(\frac{1}{3}\right)z^{-1} + \left(\frac{1}{2}\right)z^{-2}\right]}.$$

Or

- (b) Explain the effects of quantisation in the realisation of digital structures.
- V. (a) Design a Butterworth digital filter using bilinear transformation. The specifications of the desired low-pass filter are:

$$0.9 \le |H(w)| \le 1$$
; $0 \le w \le \frac{\pi}{2}$
 $|H(w)| \le 0.2$; $\le \frac{3\pi}{4} \le w \le \pi$

when T = 1 S.

Or

(b) (i) Explain the characteristics of Chebyshev filters and Butterworth filters.

(7 marks)

(ii) Discuss the concept of causality and its implications.

(3 marks)

- VI. (a) (i) Discuss the concept of pipelining and extended parallelism.
 - (ii) Discuss the Harvard computer architecture.

Or

(b) Discuss a design of a fast multiplier.

 $[4 \times 10 = 40 \text{ marks}]$