(Pages : 2)

FIFTH SEMESTER B.TECH. (ENGINEERING) [09 SCHEME EXAMINATION, NOVEMBER 2014

ME/PTME/AM 09 501—HEAT AND MASS TRANSFER

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

Each question carries 2 marks.

- 1. What is critical radius of insulation?
- 2. What is lumped heat capacity analysis?
- 3. What is meant by boiling curve?
- 4. Find the temperature of the Sun assuming as a black body, if the intensity of radiation is maximum at the wavelength of 0.5.
- 5. Give the expression for NTU.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any **four** questions. Each question carries 5 marks.

- 6. Define thermal conductivity. How does it vary with temperature for gases?
- 7. Derive an expression for steady-state on dimensional heat conduction through a hollow cylinder.
- 8. Explain about the concept of boundary layer.
- 9. Brief about various promoters used for maintaining drop wise condensation.
- 10. Explain radiation spectrum.
- 11. State and explain Fick's law of diffusion and give its expression.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.
Each question carries 10 marks.

12. (a) Derive the general 3D heat conduction equation in cylindrical co-ordinates. Assume the material as homogeneous isotrophic continues.

Or

- (b) Derive an expression for the heat conduction through a hollow cylinder from the general heat conduction equation. Assume steady-state unidirectional heat flow in radial dimension and no internal heat generation.
- 13. (a) A very large plate 5 m. height is maintained at 100° C. and exposed to air at 30° C. Calculate the convection heat transfer coefficient.

2

Or

- (b) Air at 8 kN/m² and 242° C. flows over a flat plate of 0.3 m. wide and 1 m. long at a velocity of 8 m/s. If the plate is maintained at a temperature of 78° C., estimate the heat to be removed continuously from the plate.
- 14. (a) The intensity of radiation emitted by the Sun is maximum at the wave length of 0.5μ . As a black body, determine its surface temperature and the emissive power.

Or

- (b) Explain in brief about:
 - (i) concept of black body and grey body.
 - (ii) thermal radiation.
- 15. (a) Compare diffusion and convective mass transfer.

Or

(b) Dry air at 27° C. and 1 bar flows over a wet plate 0.5 m. long at a velocity of 50 m/s. Calculate the mass transfer coefficient of water vapour in the air at the end of the plate.

 $(4 \times 10 = 40 \text{ marks})$