(Pages: 3)

Name GG. COLLEGE.

THIRD SEMESTER B.TECH. (ENGINEERING) [09 SCHEME) DEGREE EXAMINATION, NOVEMBER 2014

EC 09 303/PTEC 09 302 NETWORK ANALYSIS AND SYN

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all the questions. Each question carries 2 marks.

- 1. State Nortons theorem.
- 2. Draw circuit of Passive differentiator.
- 3. A network function is given as $V(s) = \frac{10s}{(s+3)(s+2)}$. Obtain V(t).
- 4. List out the characteristics of Chebyshev filters.
- 5. Check whether $Z(s) = \frac{8-s}{s+1}$ is a positive real function.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions. Each question carries 5 marks.

- 1. Obtain the impulse response of a series RC network.
- 2. Two coupled coils have K = 0.8, $N_1 = 500$ turns, $N_2 = 1000$ turns and mutual flux being 0.9 Wb. Find primary coil flux. If primary current is 10 A, find primary coil inductance and secondary coil inductance.
- 3. Express Y-parameters in terms of transmission parameters.
- 4. What are the different types of attenuators?
- 5. Design constant K high-pass filter with T-section having a cut-off frequency of 5 kHz and nominal characteristic impedance $R_0 = 600 \Omega$.
- 6. Explain Strum's theorem.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer one question from each module.

MODULE I

1. Derive the step response of a series RLC circuit.

(10 marks)

Or

2. Find voltage \boldsymbol{V}_L in the circuit using superposition theorem for the Figure 1.

Figure 1

(10 marks)

MODULE II

3. For the network function gives by $G(s) = \frac{100}{s(1+0.01s)(1+0.001s)}$ plot asymptotic magnitude response and phase response.

(10 marks)

Or

4. Obtain the transmission parameters of the network shown in Figure 2.

(10 marks)

Figure 2

MODULE III

5. Find the poles of system functions with n = 3, n = 4 and n = 5 Butterworth characteristics. (Do not use tables).

(10 marks)

Or

6. Synthesize a band-pass filter with maximally flat (n=4) amplitude response with $w_{c_2} = 8 \times 10^4$ rad./sec. and $w_{c_1} = 2 \times 10^4$ rad./sec.

(10 marks)

MODULE IV

7. (i) Mention the properties of RC network functions.

(5 marks)

(ii) Realize the network impedance function $Z(s) = \frac{(s+1)(s+4)}{s(s+2)}$ using Foster Form I.

(5 marks)

Or

8. Given network admittance function $Y(s) = \frac{(s+2)(s+5)}{s(s+4)(s+6)}$. Synthesize using cauer forms I and II.

(10 marks)

 $[4 \times 10 = 40 \text{ marks}]$