

## FIFTH SEMESTER B.TECH. (ENGINEERING) [09.SCHEME] DEGREE EXAMINATION, NOVEMBER 2014

CS/PTCS 09 503—SIGNAL PROCESSING

Time: Three Hours

Maximum: 70 Marks

## Part A

Answer all questions.
Each question carries 2 marks.

- 1. Define continuous time exponential and discrete time exponential signal.
- 2. Differentiate energy signal and power signal.
- 3. List any four elementary signals.
- 4. What is frequency response?
- 5. What is initial value theorem?

 $(5 \times 2 = 10 \text{ marks})$ 

## Part B

Answer any four questions. Each question carries 5 marks.

- 1. What are linear and non-linear systems? Give examples.
- 2. State and prove the Convolution theorem in relation to Fourier transform.
- 3. Explain Sampling function with neat sketch.
- 4. Write notes on time shifting property and time reversal property of Discrete-time Fourier transform.
- 5. What is the relationship between z-plane and s-plane?
- 6. State the important properties of ROC for the z-transform.

 $(4 \times 5 = 20 \text{ marks})$ 

## Part C

Answer all questions.

Each question carries 10 marks.

 (a) Explain the conditions for BIBO stability for discrete time signals in terms of impulse response.

Or

(b) Find the sequence y(n) = 3x(n+2) + x(n-4) - 2x(n), where  $x(n) = \{1, -2, 4, 6, -5, 8, 10\}$ .

Turn over

- 2. (a) Find the Laplace transforms of the following:-
  - (i) e- $t \sin 4t$ .

(ii)  $2-2et+0.5\sin 4t$ .

(iii)  $\frac{4}{(s+1)^2+12}$ .

(iv)  $\frac{s-1}{s(s+1)}$ .

Or

- (b) Define and explain the Parseval's theorem for power signals.
- 3. (a) Write notes on Sampling and Nyquist rate.

Or

- (b) Determine the Fourier transform for the given Discrete-time signal  $x(n) = a^n u(n)$ , |a| < 1.
- 4. (a) Prove that the final value of x(n) for  $X(z) = \frac{z^2}{(z-1)(z-0.2)}$  is 1.25 and its initial value is unity.

Or

(b) Using long division, determine the inverse z-transform of  $X(z) = \frac{1+2z^{-1}}{1-2z^{-1}+z^{-2}}$  if the system is casual.

 $(4 \times 10 = 40 \text{ marks})$