THIRD SEMESTER B.TECH. (ENGINEERING) [09 SO EXAMINATION, NOVEMBER 2014

AI 09 305—DIGITAL SYSTEMS

Time: Three Hours

Answer all questions.
Each question carries 2 marks.

- 1. Find 9's complement of 546700.
- 2. What are the basic laws in Boolean Algebra?
- 3. Distinguish between Combinational Circuits and Sequential Circuits.
- 4. What is Propagation delay?
- 5. Define setup time and hold time required of a clocked flip-flop.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions. Each question carries 5 marks.

- 6. Simplify the following Boolean expression F = AB + (AC)' + AB'C (AB + C).
- 7. What is a Decoder ? Explain a 3 to 8 decoder with its truth table and logic diagram.
- 8. Explain briefly about synchronous counter. How to calculate propagation delay of a synchronous counter?
- 9. Explain State Assignment Techniques.
- 10. Brief about Schottky TTL gates.
- 11. What is Magnitude Comparator? Give the combinational circuit for the function F (A>B).

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

Each question carries 10 marks.

- 12. (a) (i) Express the function F = (1, 3, 5, 7) as a product of Max terms.
 - (ii) Express the complement of the above function as a product of min terms.

Or

- (b) Obtain the minimal sum of product for the function $F(A, B, C, D) = \Sigma(1, 2, 3, 7, 8, 9, 10, 11, 14, 15)$ by Quine McClusky method.
- 13. (a) Design a BCD to Decimal Decoder with the use of decoder.

Or

- (b) What is a Look Ahead Carry Generator? What is its importance? Draw a circuit for a 3-bit binary adder using Look Ahead Carry Generator and other gates.
- 14. (a) Explain in detail about the operation of Serial Input Serial Output Shift Register.

Or

- (b) Design a counter with a following repeated sequence 0 1 2 3 4 5 6.
- 15. (a) Analyse the synchronous sequential circuit with its state table and state diagram.

Or

(b) What is an Asynchronous sequential circuit? Explain the basic structural equation and its minimization.

 $(4 \times 10 = 40 \text{ marks})$