D	70	9	q	q
$\boldsymbol{\nu}$	v	4	U	J

(Pages: 3)

1.00	a Co	1		
	13072		1	8 8
Name.				
1/3/		1		
Reg. N	lo			

FIFTH SEMESTER B.TECH. (ENGINEERING) (09 SCHEME) DEGREE EXAMINATION, NOVEMBER 2014

AI 09 503—CONTROL ENGINEERING

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all the questions. Each question carries 2 marks.

- When a system is said to be linear?
- 2. Define rise time.
- 3. What are the advantages of Bode plot?
- Write the State equations for linear systems.
- 5. When a system is said to be completely controllable?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- Describe about the effect of feedback on overall gain and stability.
- 7. Find the Steady state error for unit step, unit ramp and unit acceleration input for

$$\frac{10}{s\left(0.1s+1\right)\left(0.5s+1\right)}.$$

- 8. Explain briefly the Nyquist Stability Criterion.
- 9. Find the Gain Margin and Phase Margin for the system with transfer Function

$$G(S) = \frac{k}{s(1 + sT_1)(1 + sT_2)}.$$

10. Obtain the State Space representation of system whose differential equation is given by:

 $\ddot{y} + 2\ddot{y} + 3\dot{y} + 6y = \ddot{u} - \dot{u} + 2u$. Also draw the signal flow graph for the system.

11. Give the standard state equation and draw the state diagram for MIMO system.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer the following.

12. (a) Obtain the Transfer Function I(S) / V(S) for the network shown :

Or

(b) Convert the Block Diagram to Signal Flow Graph and Obtain the transfer function using Mason's Gain Formula

13. (a) Derive the response of a second order system for underdamped case when the input is unit step.

Or

(b) Sketch the root locus of unity feedback with $G(S) = \frac{k(s+2)}{s(s+1)(s+4)}$.

14. (a) Obtain the Magnitude and Phase angle from Bode plot for the system

G(S) =
$$\frac{20(0.1s+1)}{s^2(0.2s+1)(0.02s+1)}$$
.

Or

- (b) An Unity Feedback system has an Open loop transfer function $G(S) = \frac{20}{s(s+2)(s+5)}$. Using Nichols chart, determine the closed loop frequency response and estimate M_r , w_r and w_b .
- 15. (a) Reduce the given state model into its canonical form by diagnolizing matrix A

$$\dot{\mathbf{X}}(t) = \begin{bmatrix} 0 & 1 & -1 \\ -6 & -11 & -6 \\ -6 & -11 & 5 \end{bmatrix} \, \mathbf{X}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = [1 \quad 0 \quad 0] X(t).$$

0

- (b) For the following system, determine the controllability using:
 - (i) Kalman's test.

(ii) Gilbert's test

$$\dot{\mathbf{X}} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}.$$

 $(4 \times 10 = 40 \text{ marks})$