(Pages : 2)

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, APRIL 2014

EE/PTEE 09 604—ELECTRIC DRIVES

(2009 Scheme)

[Regular/Supplementary/Improvement]

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

Each question carries 2 marks.

- 1. Name one suitable motor for cranes, stating the reason.
- 2. Draw the typical speed torque curve of a fan type load.
- 3. What are the possible quadrants of operation of a semiconductor fed d.c. drive system?
- 4. In Scherbins scheme of induction motor control, if the d.c. link current is doubled, how much the total copper loss P_{cr} will increase/decreases?
- 5. Give any two applications of synchronous drives.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any **four** questions. Each question carries 5 marks.

- 6. A weight of 500 kg. is being lifted up to at a uniform speed of 1.5 m/s by a winch drive by a motor running at a speed of 1000 r.p.m. The moments of inertia of the motor and winch are 0.5 kg.-m.² and 0.3 kg.-m.² respectively. Calculate the motor torque and equivalent moment of inertia referred to the motor shaft. In the absence of weight, motor develops a torque of 100 N-m when running at 1000 r.p.m.
- 7. A drive has following parameters:

 $J = 10 \text{ kg.-m.}^2$

 $T_{M} = 100 - 0.1 \text{ N}, \text{ N-m}$

 T_L (passive) = 0.05 N, N-m.

Where N is the speed in r.p.m. Then find the steady-state speed.

- 8. Explain principle of operation of chopper-feed d.c. drives.
- 9. What are the advantages of a.c. drives over d.c. drives?

- 10. Describe the conventional Scherbins scheme of slip energy recovery and enumerate its drawback.
- 11. Explain the self-control mode of a synchronous motor.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

Each question carries 10 marks.

- 12. Explain the following control methods for an electric drive:
 - (i) Closed loop torque control.
 - (ii) Closed loop speed control.
 - (iii) Closed loop position control.

Or

- 13. (a) Explain "steady-state stability" of an electric drive.
 - (b) Explain multiquadrant operation of an electric drive.
- 14. Explain three-phase fully controlled rectifier control of d.c. separately excited motor.

Or

- 15. Explain the closed-loop control scheme for d.c. motor drive below and above the base speed.
- 16. Explain closed-loop current source invertor (CSI) control of a three-phase induction motor. How multiquadrant operation is achieved using this drive?

Or

- 17. Explain the working of CSI controlled induction motor drive with neat sketch.
- 18. Explain the operation of 3¢ brushless d.c. motor drive, with necessary waveforms.

Or

19. Describe the principle of operation of switched reluctance motor. What are the advantages of SRM over other a.c. drives?

 $(4 \times 10 = 40 \text{ marks})$