(Pages : 2)

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXA APRIL 2014

(2009 Scheme)

EC/PTEC 09 603—RADIATION AND PROPAGATION

(Regular/Supplementary/Improvement)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- Define Directivity.
- 2. What is antenna beam efficiency?
- 3. Define Array factor.
- 4. Give two applications of high frequency antenna?
- 5. What is meant by virtual height?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 1. Find the effective aperture of an antenna with radiation intensity $U = \sin \theta$, $0 < \theta < \frac{\pi}{2}$
- 2. How is antenna bandwidth measured for wide-band antennas and for narrow-band antennas ?
- 3. Explain in brief the working of rectangular arrays.
- 4. Explain in brief how loop antennas are used in direction finding?
- 5. Explain in brief the working of fractal antenna.
- 6. Derive the attenuation factor for ionospheric Propagation.

 $(4 \times 5 = 20 \text{ marks})$

Part C

1. Derive the expression for far-field Components of an infinitesinal dipole.

Or

2. Given that the radiation intensity of an antenna is $U = \sin^2 \theta \sin \phi$, $0 < \phi < \frac{\pi}{2}$, $0 < \theta < \frac{\pi}{2}$. Find the directivity using actual formula and directivity from HPBW.

3. Derive the Array factor, Directions of Pattern maxima, Pattern minima and HPBW for broadside array of *n*-isotropic sources.

Or

- 4. Design a Dolph-Chebychev array of 10 elements, with spacing between the elements is $\frac{\lambda}{2}$ and the side lobe level down the main lobe is 22 dB.
- 5. Explain with diagram the operation of Rhombic antenna and its design methods.

Or

- 6. Explain the operation of turnstile antenna and show that a coaxial cable of 70Ω impedance can be used to feed the turnstile antenna.
- 7. Derive the expression for refractive index of ionospheric layer.

Or

8. Derive the expressions for the reflection factor for horizontal polarization and vertical polarization in ground wave propagation.

 $(4 \times 10 = 40 \text{ marks})$