Name....

Reg. No..

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, APRIL 2014

(2009 Scheme)

IT/CS/PTCS 09 602—COMPILER DESIGN

(Regular/Supplementary/Improvement)

Time: Three Hours

Maximum: 70 Marks

Part A

Short Answer Questions. (one/two sentences).

Answer all the questions.

Each question carries 2 marks.

- 1. What data structures are used in the implementation of a symbol table?
- 2. How does the tool LEX help in the recognition of tokens?
- 3. List the issues in a Shift Reduce Parser.
- 4. Is the following grammar G, LL (1)?

$$E \rightarrow A \mid B \quad A \rightarrow a \mid c \quad B \rightarrow b \mid c$$
.

5. State the issues in the design of a Code generator.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

Analytical/Problem solving questions.

- 6. What are the various phases of the compiler? Explain each phase in detail.
- 7. Construct the predictive parser for the following grammar:

$$S \rightarrow (L)/a$$

$$L->L$$
, S/S

8. Construct the syntax tree for the following assignment statement:

$$a := b^* - c + b^* - c$$

- 9. Explain the principal sources of optimization in detail.
- 10. Construct the dag for the following basic block:

$$d := b * c$$

$$e := a + b$$

$$b := b^* c$$

$$a := e - d$$

11. Explain in detail about the various issues in design of code generator.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

Descriptive/Analytical/Problem solving questions.

12. (a) In the context of a complier, briefly describe the output of each major compilation phases for the assignment statement x = y * z + 3 + 2, where x, y, z, are real numbers. State any assumptions you make.

Or

(b) Construct SLR parsing table for the given grammer

$$S \rightarrow CC$$
 $C \rightarrow cC/d$

13. (a) Consider the following simple context free grammar:

$$G \rightarrow S \quad S \rightarrow x \quad S \rightarrow Ay \quad A \rightarrow Bx \quad B \rightarrow z.$$

Is this grammar LR (1)? Justify. Trace for the string w = zxy.

Or

- (b) Explain how LALR parsing table is constructed. Develop an algorithm for the same.
- 14. (a) Explain how DAGs will help in intermediate code generation? Construct a DAG and a three address-code for the expression a + a*(b c) + (b c)*d.

Or

- (b) Discuss why buffering is required while recognizing lexemes? Explain how sentinels are handled using buffers.
- 15. (a) What are the different code optimization techniques available in local and global optimization? Illustrate each with an example.

Or

(b) Explain a simple code generation algorithm for the code segment as follows:

$$W = (x+z) - (x-y).$$

 $(4 \times 10 = 40 \text{ marks})$