

COMBINED FIRST AND SECOND SEMESTER B.TECH (ENGINEE) **DEGREE EXAMINATION, APRIL 2014**

(2009 Scheme)

PTEN / EN 09 102—ENGINEERING MATHEMATICS-II

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

1. Solve
$$\frac{dy}{dx} = e^{3x-2y} + x^2 d^{-2y}$$
.

2. Solve
$$-y dx + (x + x^2y) dy = 0$$
.

3. Find L $[\sin^2 t]$.

4. Show that
$$\nabla \times \mathbf{F} = 0$$
 if $\vec{\mathbf{F}} = (y^2 + 2xz^2)\vec{i} + (2xy - z)\vec{j} + (2x^2z - y + 2z)\vec{k}$.

State Green's theorem.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Solve (D⁴-1) $y = e^x \cos x$.
- 7. Find the orthogonal trajectories of the family of parabolas $y^2 = 4$ ax.
- 8. Find L [$t \cos at$].
- Find the inverse Laplace transform of $\frac{s+2}{s^2-4s+13}$.
- 10. Show that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$.
- 11. Evaluate the line integral $\int_{C} \left[(x^2 + xy)dx + (x^2 + y^2)dy \right]$ where C is the square formed by the lines $y = \pm 1$ and $x = \pm 1$.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

12. (a) Solve
$$(D^2 - 1)y = x \sin 3x + \cos x$$
.

Or

- (b) Solve by the method of variation of parameters $(D^2 + 1) y = 2 \cos x$.
- 13. (a) Solve, using Laplace transforms, $y'' + 4y' + 3y = e^{-t}$, y(0) = y'(0) = 1.
 - (b) Find the inverse Laplace transform of $\frac{s+2}{s^2(s+1)(s+2)}$.
- 14. (a) If $u = x^2yz$, $v = xy 3z^2$, find:
 - (i) $\nabla (\nabla u \cdot \nabla v)$.
 - (ii) $\nabla \cdot (\nabla u \times \nabla v)$.

Or

- (b) Show that the following vectors are solenoidal:
 - (i) $(-x^2 + yz)\vec{i} + (4y z^2x)\vec{j} + (2xz 4z)\vec{k}$.
 - (ii) $3y^4x^2 \vec{i} + 4x^3z^2 \vec{j} + 3x^2y^2 \vec{k}$.
- 15. (a) Verify Green's theorem for $\int_{C} [(xy+y^2)dx+x^2dy]$, where C is bounded by y=x and $y=x^2$.

Or

(b) Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0, y = b.

 $(4 \times 10 = 40 \text{ marks})$