\mathbf{D}	42515	
_	TAULU	

(Pages: 2)	(Page	s:	2)
------------	-------	----	----

Name	
77 37	12

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2007

Civil Engineering

CE 04 702—DESIGN OF HYDRAULIC STRUCTURES

(2004 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Each question carries 5 marks.

- 1. (a) Sketch the practical profile of a low and high gravity dam, giving details of various parameters like top width, bottom width etc.
 - (b) With a neat sketch, explain the working of a Hooded Type Syphon spillway.
 - (c) Write brief note on the requirements to fulfilled by a canal outlet.
 - (d) Explain with a neat sketch the plug hole arrangement working in a tower head sluice.
 - (e) With a neat sketch briefly outline the design of a syphon well drop.
 - (f) Discuss briefly about the causes of a weir constructed across a river as a part of diversion head work.
 - (g) Discuss briefly about the selection of a suitable type of cross drainage work.
 - (h) Explain with neat sketches (i) Level crossing; (ii) Inlets and outlets.

 $(8 \times 5 = 40 \text{ marks})$

Answer any one question from each main question.

Each question carries 15 marks.

2. (a) Discuss in detail the effect of providing a top width and a free board to get a practical profile of a gravity down from the elementary profile.

Or

- (b) A masonry dam 10 m. high in trapezoidal in section with 1 m. top width and 8 m. base width. The U/S face is provided with 1: 8 batter. Test the stability of the dam. Unit weight of masonry = 2,240 kgf/m.³ Permissible shear stress = 14 kgf./cm.² Calculate the stresses at Toe and Heel of dam.
- '3. (a) Design a vertical drop horizontal floor tank surplus weir with the following data and draw a neat free hand sketch indicating the various designed dimensions:

Combined catchment = 30 sq.km. Intercepted catchment = 25 sq.km.

Maximum water level = +7.00 m.Full tank level = +6.00 m.

General ground level = +5.00 m. Tank bund level = +8.10 m.

Slope of tank bund = 2:1 (both sides)

Ryve's coeff. for combined catchment = 9.0 Ryve's coeff. for intercepted catchment = 1.8

Assume any other data required suitably.

- (b) Discuss with neat sketches various types of canal outlets.
- 4. (a) Design a notch type canal drop for a canal whose bed level drops by 2 m., with the following particulars:

Full supply discharge = 5 cumecs

Bed width = 6.0 m.

Full supply depth = 1.8 m.

Half supply depth = 1.2 m.

Assume any other data required suitably. Draw a sketch showing design features of the longitudinal section along the canal.

O

- (b) Draw a neat sketch and explain the functions of various parts of a canal regulator with road bridge. Highlight the design criteria of the regulator.
- 5. (a) Design a suitable cross drainage work based on the following data:

Canal

Full supply discharge = 25 cumecs Full supply level = +214 m. Canal bed level = +212.5 m. Canal bed width = 16 m.

Drainage

High flood discharge = 150 cumecs High flood level = +211.5 m. High flood depth = 2.0 m. General ground level = +213.0 m.

U

(b) Design a syphon aqueduct based on following data at the crossing of a canal and a drainage:—

Canal

Full supply discharge = 40 cumecs Bed width = 30 m. Full supply depth = 1.8 m. Bed level = -206.0 m.

Drainage

High flood discharge = 450 cumecs High flood level = + 207.0 m. Bed level of drainage = + 204.0 m.