D	52386	١
J	04000)

Pages : 2)	Na	am	
	54		

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2008

CE 04 604 - GEOTECHNICAL ENGINEERING - II

(2004 admissions)

Time: Three Hours

Maximum: 100 Marks

e.....

Reg. No.....

Answer all questions from Question 1.

Answer any one question from each Question 2 to Question 5.

Assume any additional data required appropriately.

- 1. Answer all questions :-
 - (i) Give a typical borelog. How is it useful in determining the type and depth of foundations?
 - (ii) How would you decide the depth of soil exploration and the lateral extension of investigation?
 - (iii) Write a note on isobars.
 - (iv) Why is that the settlement of a raft foundation will be more than that of isolated footings for the same load and same soil conditions beneath a building? Discuss.
 - (v) What are the functions of foundations? What are the major criteria to be satisfied in the design of all types of foundations (shallow or deep or machine foundations)?
 - (vi) Briefly discuss the common types of foundations (shallow and deep) and what are their advantages and limitations?
 - (vii) What are the different circumstances under which pile foundations are recommended? Discuss.
 - (viii) What considerations govern the fixing of the depth of a well foundation? Discuss briefly.

 $(8 \times 5 = 40 \text{ marks})$

(a) Briefly explain the geophysical methods of exploring the underground strata.

Or

- (b) (i) Differentiate between Ultimate Bearing Capacity and Safe Bearing capacity, and between Safe Bearing pressure and allowable bearing pressure.
 - (ii) Estimate the gross and net safe bearing capacities of a 2m × 3m footing placed at a depth of 1.5 m on a strata of soil of unit 19 kN/m³. Assume the following soil properties and conditions of water level.

Case 1. $c = 50 \text{ kN/m}^2$ and $\phi = 0^\circ$ with water level at 5 m below the level of foundation. Case 2. $c = 5 \text{ kN/m}^2$ and $\phi = 30^\circ$ with water level at 0.5 m below the level of foundation $(N_c = 30, N_q = 18, N_r = 22)$.

(a) Write down the Boussinesq's equation for a point load. What are the assumptions made?
 Extend Boussinesq's equation for pressure below corner and centre point of a uniformly loaded rectangular area.

Or

(b) What is the effect of rise of water table on bearing capacity and the settlement of a footing on sand? Discuss. Explain how do you estimate the settlement of a footing on sand using SPT N values.

(15 marks)

(a) Discuss the various loads that can possibly act on a foundation – that need to be considered
in the design of foundations. Discuss the codal recommendations of the computation of design
loads.

Or

(b) Design a Trapezoidal combined footing to support two columns (30 cm \times 30 cm) carrying column loads of 1.2 MN and 0.90 MN, if the spacing between the two columns is 4 m. Allowable soil pressure is 200 kN/m² and the length of the footing is to be 5 m.

(15 marks)

- 5. (a) (i) Write a short note on uplift piles.
 - (ii) Determine the load carrying capacity of a single square pile 400 mm \times 400 mm, 20 m long. The bored cast in place pile is installed in a sandy soil having c = 0, $\phi = 35^{\circ}$, $\gamma = 19 \, \text{kN/m}^3$. Water table is not available with the top 30 m at site. Sand may assumed to be dry $(N_{\alpha} = 50, N\gamma = 40)$.

От

(b) Discuss in detail: identification of expansive soils, problems encountered. For foundations in expansive soils, design of foundations in expansive soils.

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$