-	59284	
C	C G B B B B C A	
11		L

Name		
	11.52.4 [3]	
Reg. No		

FIFTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION JUNE 2009

CE 04 503-BUILDING TECHNOLOGY-II

(2004 admissions)

Time: Three Hours

Maximum: 100 Marks

Answer any five questions from Question I,. 1, 5 marks each.

Answer one question (A or B) from each of Question II to Question V (i.e., 4 questions, 15 marks each).

- I. (a) Differentiate between horizontal circulation and vertical circulation for internal movement inside a building.
 - (b) Explain with neat figures the various sunshading devices.
 - (c) Differentiate between airborne noise and structure borne noise.
 - (d) Explain the role and requirements of a staircase in providing fire protection.
 - (e) Write a note on prefabricated construction with reference to tall structures.
 - (f) Differentiate between stairs and ramps Discuss their design aspects and use, ideal location etc.
 - (g) Discuss the causes of corrosion of reinforcements in RCC structures.
 - (h) Write short note on shear wall (in multistoried buildings).

 $(8 \times 5 = 40 \text{ marks})$

II. (a) Method any one method of drawing the sunpath.

Or

- (b) Explain the sol-air temperature concept as applicable for building design purposes.
- III. (a) What are the requirements and conditions of good acoustics in a building? Discuss.

Or

- (b) Describe the fire-resisting properties of concrete, steel and glass used as building materials.
- ΓV . (a) Discuss the special features and design considerations of passenger elevators, service elevators and goods elevators.

Or

- (b) Discuss the various components of a typical sewage disposal scheme for a residential colony with neat flow diagrams.
- V. (a) Differentiate between engineered building and non-engineered building from point of view of building failures.

Or

(b) What are the principal causes of failure of RCC framed structures? Explain.

 $(4 \times 15 = 60 \text{ marks})$