Reg. No.....

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2010

CE 04 602-STRUCTURAL MECHANICS-III

(2004 Admissions)

Time: Three Hours

Maximum: 100 Marks

Missing data, if any, may be suitably assumed.

Answer all questions.

I. (a) Define the flexibility matrix and stiffness matrix for the following beam.

- (b) Prove that $[K] = [B]^T [K] [B]$. Symbols have their usual meanings.
- (c) Derive the load transformation matrix for the following frame with element coordinate as shown.

- (d) Derive the stiffness matrix for a 20 bar element in terms of 1D bar element.
- (e) Discuss the damped free vibration of an SDOF system with different levels of damping.
- (f) Explain the principle of vibration isolation.
- (g) Prove that stiffness matrix is symmetric.

(h) Derive the displacement transformation matrix for the following frame:

 $(8 \times 5 = 40 \text{ marks})$

II. (a) Considering only axial deformations for the truss shown, determine the flexibility matrix [F] associated with the applied forces P₁ and P₂.

Or

(b) Analyse the following frame for displacement and member forces. Use flexibility method. EI = constant.

III. (a) Generate the stiffness matrix for the following beam with co-ordinates as shown.

(b) Find the displacements over supports and member end forces for the beam shown below. Use stiffness approach. (L = 4m).

IV. (a) A single degree of freedom system (under damped) is subjected to a sinusoidal base displacement. Find the expression for displacement transmissibility.

Or

(b) Find the frequency of vibration and mode shapes for the following 2 DOF system.

