EIGHTH SEMESTER B.TECH DEGREE EXAMINATION, JUNE 2010

CE.04.805 (F) - Urban Transportation Planning

Time: Three hours

Maximum: 100 marks

(Answer all questions)

 $(8 \times 5 =$

40)

- 1 (a) Explain the need for an integrated approach to Transportation and land use planning.
 - What is travel demand matrix? Explain briefly.
 - Enumerate the factors to be considered for the selection of cordon line and zone (c) boundaries for an urban transportations study.
 - List out the factors affecting trip generation and attraction. (d)
 - Explain the concept of Gravity model. (e)
 - What do you understand by growth factor models? (f)
 - What are the factors affecting mode choice? (g)
 - Explain various trip assignment techniques. (h)
- While explaining the hierarchical levels of transportation planning, discuss the (15)2 (a) characteristics of trip maker and their effect on travel demand estimation.

OR

- With a flow chart, explain the problem definition phase of transportation planning (15)(b) process. Distinguish between Goals, Objectives, Constraints and Standards associated with Transportation planning.
- How you will plan and collect the household travel date by road side interview survey? (15)3 (a)

OR

- With suitable examples, explain and compare various trip generation models. (b)
- Estimate the future year trip distribution from the following base year using average 4 (a) growth factor method.

Zone	A	В	C	Growth factor
A	0	50	100	2
В	50	0	150	3
C	100	150	0	4

OR

Apply gravity model for the following data and calculate all trip interchanges (b)

(15)

(15)

(15)

 $ln F = -1.9 ln d_{ij}$ Take all zonal adjustment factors as 1.

ZONE	PRODUCTIONS	ATTRACTIVENESS	
I	4500	0	
İ	0 .	3	
Ш	500	4	
IV .	0	5	

TIME/COST MATRIX

Zone	I	п	Ш	IV	
I	0	10	15	20	
п	10	0 .	20	15	
m	15	20	,0	10	
IV	20	15	- 10	0	

- 5 (a) i) Distinguish between trip end and trip interchange mode split models.
 - ii) A calibrated utility function for travel time in a medium sized city by car, bus and light rail is $U = a 0.002 X_1 0.05 X_2$ where X_1 is the cost of travel(Rs.) and X_2 is the travel time(minutes). Calculate the modal split for the given values.

Mode	Α	X_1	X ₂
Car	-0.30	130	25
Bus	-0.35	80	40

(15)

How much parking fee should be imposed on car to bring the modal split to 50:50?

OR

(b) A simple network shown in Figure 1 below has two way links. The time cost of links is also shown. A, B, C and D are zonal centroids. Find the shortest path between all zonal centroids.