1		70	n	O
U	1	79	v	4

(Pages: 3)

Name					
Por	No.				

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2011

CE 04 704 (B)-COMPUTATIONAL METHODS AND OPERATIONS RESEARCH

(2004 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

- 1. (a) Given $\alpha = 9.00 \pm 0.05$, $b = 0.0356 \pm 0.0002$, $c = 15300 \pm 100$, $d = 62000 \pm 500$. Find the maximum value of absolute error in a + b + c + d.
 - (b) Develop a computer algorithm to solve an algebraic equation using Newton-Raphson method.
 - (c) The area, A of a circle of diameter, d is given for the following value:

d	80	85	90	95	100	(A)
Λ	5026	5674	6362	7088	7854	

Calculate the area of a circle of diameter 105.

(d) Find the largest eigen value and the corresponding eigen vector of the matrix.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$$

- (e) Derive the expression for finding the derivative using Newton's forward interpolation formula.
- (f) Derive an expression for solving ordinary differential equations using Euler's method.
- (g) State and explain a non-linear programming problem.
- (h) Differentiate between assignment and transportation problems.

 $(8 \times 5 = 40 \text{ marks})$

Part B

2. (a) Find the root of the equation $2x^3 + x^3 - 20x + 12 = 0$, using the bisection method correct to three decimal places.

(7 marks)

(b) Explain the importance of numerical methods in Civil Engineering. Give at least three examples.

(3 + 5 = 8 marks)

Or

(c) The total flexibility matrix of a structure is given by

$$[F_s] = \left(\frac{1}{36EI}\right) \begin{bmatrix} 72 & 72 & 288 & 1008 \\ 72 & 132 & 288 & 1308 \\ 288 & 288 & 1536 & 4416 \\ 1008 & 1308 & 4416 & 16496 \end{bmatrix} .$$
 Take EI as constant. Determine the inverse of

the matrix $[F_s]$ using (i) Gauss elimination method and (ii) Gauss Jordan method.

3. (a) Find the cubic spline corresponding to the interval [2,3] from the following table:

	x	1	2	3	4	5
١	у	30	15	32	18	25

Hence compute (i) y (2.5) and (ii) y' (3).

Or

(b) Find all the eigenvalues and the corresponding eigenvectors of the matrix

$$\begin{bmatrix} 5 & -4 & 6 \\ -4 & 9 & 2 \\ 6 & 2 & 4 \end{bmatrix}$$
, using Jacobi's method.

4. (a) Use Euler's method to solve $y' = \frac{t-y}{2}$ on [0,3] with $\hat{y}(0) = 1$. Compare the solutions for

$$h=1,\frac{1}{2},\frac{1}{4} \text{ and } \frac{1}{8}$$
.

Or

(b) Find $\int_{0}^{1} \left[1 + e^{-x} \sin(4x)\right] dx$ using (i) trapezoidal rule; (ii) Simpson's $1/3^{rd}$ rule; and (iii) Simpson's 3/8 rule.

5. (a) Using dual simplex method

Maximize
$$2x_1 + x_2$$
,
subject to $3x_1 + x_2 \ge 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \ge 0$

Or

(b) A company has three plants A, B, C and three warehouses X, Y, Z. The number of units available at the plant is 60, 70, 80 respectively. The demands at X, Y, Z are 50, 80, 80 respectively. The unit costs of transportation are as follows:

Plants			Warehouse		
1		X	Y	z	
¥ 8	A	8	7	3	
	В .	3.	- 8	9	
	\mathbf{C}	11	3	- 5	

Find the allocation so that the total transportation cost is minimum.

 $[4 \times 15 = 60 \text{ marks}]$