n	വ	1	E	
IJ	23	1	IJ	Ü

(Pages: 2)

Man	e
Mam	C

Reg. No.....

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION DECEMBER 2011

CE 04 702—DESIGN OF HYDRAULIC STRUCTURES

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Assume any required data suitably.

Part A

- I. (a) Explain the practical profile of a dam with the help of a neat sketch.
 - (b) Explain analysis of arch dam using cylinder theory.
 - (c) Distinguish between surplus escape and flush escape.
 - (d) Explain non-modular, semimodular and rigid modular outlets.
 - (e) Compare different types of canal fulls.
 - (f) Distinguish clearly between a weir and a barrage.
 - (g) What is a cross drainage work? State their types.
 - (h) Explain the different parameters to be considered in the design of a cross drainage work.

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) Design a surplus weir for a minor tank forming group of tanks, with the following data.

Combined catchment area

 $= 30 \, \text{km}^2$

Catchment area intercepted by upper tanks = 20 km^2

Ryve's Coefficient

= 9

Earth bund details:

Top width

= 2.40 m

Side slopes

= 2:1 on both sides

Top level of bunds

 $= + 100.50 \,\mathrm{m}$

Full tank level

 $= + 98.00 \,\mathrm{m}$

Maximum water level

+ 98.75 m

General ground level at site

 $= + 97.00 \,\mathrm{m}$

Ground level slopes off to a level of +96.00 m in a distance of 8 m. Provision is to be made to store water up to MWL in times of necessity.

*	34	
110	sign	
200	OILU	

(10)
(10 marks (10 marks
(10 marks
Var _ g = M = M
(20 marks)
(10 marks)

Oi

(b) Design an aqueduct for an irrigation canal crossing a stream for the following data:

Particulars	Canal	Stream
Discharge	15 cumecs	115 cumecs
Bedwidth	8.0 m	32.0 m
Bed level	+ 102.30 m	+ 100.0 m
FSL/HFL	+ 104.0 m	+ 102.0 m
Side slopes	1:1	1:1
Permissible velocity	1.5 m/s	2.0 m/s
Top level of bank	+ 104.5 m	10 10
Top width : right bank	3.0 m	
left bank	1.0 m	
Average ground level	+ 101.5 m	
Doning .	o , ", e se Balu	

Design:

Drainage way, Canal water way, trough foot slab and bottom slab.

(30 marks)

Draw to a suitable scale:

(i) Half plan at top and half at foundation.

(20 marks)

(ii) Cross-section along canal.

(10 marks)