	0079	
C	2873	1

(Pages 2)

Name	**********	
Dog No	E 2	- X84

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2012

CE 04 603—STRUCTURAL DESIGN—II

(2004 Scheme)

Time: Three Hours

Maximum: 100 Marks

(Use of IS 800, IS 883, IS 875, SP6 and steel table permitted)
(Assume suitable data if not given)

Part A

Answer all questions.

- (a) State the merits and demerits of welded connection over bolted connections.
 - (b) Define semi-rigid connections.
 - (c) Define web crippling and web buckling in beams.
 - (d) Explain Latticed columns with neat sketch.
 - (e) Derive the equation for determining area of cover plates in a built up beam.
 - (f) Define Slab base with a neat sketch.
 - (g) Briefly explain different types of roof trusses.
 - (h) Explain flitched beam with neat sketch.

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) Two ISF sections 200 mm \times 10 mm each and 1.5 m long are to be jointed to make a member of length 3 m. Design a butt joint with the bolts arranged in diamond pattern and find the efficiency. The flats are supposed to carry a tensile force of 500 kN. Use 20 mm diameter bolts and steel plates of f_y 250 N/mm².

Or

- (b) Design a single angle discontinuous strut to carry a axial compressive load of 80 kN. The length of strut is 3.6 m between intersections and is to be connected to 12 mm thick gusset plate. Design the connections also.
- III. (a) Design a simply supported laterally restrained beam of span 6 m subjected to u.d.l. of 10 kN/m and central concentrated load of 50 kN. Assume f_y of steel 250 N/mm².

Oı

(b) Design a built up column consisting of two channels placed toe to toe. The column carries an axial load of 1600 kN. The effective height of the column is 8 m. Design built up column using battens. Design the battens also.
Turn over

IV. (a) Design a gusseted base for a column ISHB 350 @ 710 N/m carrying a load of 3000 kN. The column is to be supported on a concrete pedestal. The allowable bearing pressure in concrete is 5 MPa.

Or

- (b) Design channel section purlin for the following data: Distance between c/c of trusses 5 m, Distance between c/c of purlins - 1.6 m, Inclination of the roof surface to horizontal - 30°, Weight of GI sheets - 135 N/m², Wind load normal to roof - 1.5 kN/m². Use steel of f_y -250 N/mm².
- V. (a) Design a solid wood column for the following requirements: Load on the column 450 kN, safe stress – 7 N/mm², Effective length of column-3 m. Assume column situated at outside location.

Or

(b) A flitched beam is fabricated from two timber planks of size 100 mm \times 300 mm and a steel plate 25 mm thick sand witched between the two. Find the depth of steel plate and also the moment of resistance of the flitched beam. Take f_s = 165 N/mm², f_w = 13.5 N/mm², E_s = 20 E_w . (4 \times 15 = 60 marks)