-	28953	
	40000	

(Pages	:	2)
--------	---	----

Name	***************************************

Reg. No.....

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION JUNE 2012

CE 04 702—DESIGN OF HYDRAULIC STRUCTURES

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Assume any required data suitably.

Part A

- 1. (a) What are the forces acting on a dam?
 - (b) Differentiate between a high and low dam.
 - (c) Explain with sketches a weir with shutters and weir without shutters.
 - (d) Write a short note in different types of outlets.
 - (e) Explain the factors to be considered in the selection of a type of fall at a location.
 - (f) With the help of a sketch explain the various components of a syphon well drop.
 - (g) What is meant by a cross drainage work? Explain their types.
 - (h) Discuss various factors in selecting suitable type of cross drainage works.

 $(8 \times 5 = 40 \text{ marks})$

Part B

2. (a) Design a surplus work of a tank forming part of a chain of tanks for which following data are available.

Combined catchment area = 26 sq.km.

Intercepted catchment area = 21 sq. km.

Ryve's coefficient = 10

Full tank level. = + 12.00 m.

Maximum water level = + 12.75 mTop bund level = + 14.50 m

Top width = 3.0 m

Side slopes 2 H: IV for both u/s and d/s. General ground level at site is + 11.00 m and the ground slopes d/s of proposed site to 10.00m. in about 6m. distance. Hard soil is available at + 9.00 m. Bligh's constant is 5.

Design:

- The length and section of the weir with suitable provision to store water up to maximum water level during off monsoon season.
- (ii) Suitable abutment wing walls and return.
- (iii) Downstream stepped solid apron.

 $(3 \times 10 = 30 \text{ marks})$

Turn over

Draw to a suitable scale:

- (i) Section weir showing details of wing wall and solid apron.
- (ii) Half plan at foundation and half top view.

 $(2 \times 15 = 30 \text{ marks})$

Or

(b) A canal regulator Cam bridge is to be designed with the following data:

Hydraulic particulars of canal u/s.

Full supply discharge = $24m^3/s$.

Bed width = 16 m

Bed level = + 52.00

Full supply depth = 2 m

Top level of bank = 55 m with 3m top width.

Hydraulic particulars canal d/s

Full supply discharge = 20 m³/s.

Bed width = 16 m

Bed level = +52.00

F.S. depth = 1.75 m

Top level of bank = 54.70 m.

Top width of banks are the same as those on the u/s side. The regulator carries a roadway single lane designed to IRC class A. Provide clear free board of 1m above F.S.L to the road bridge. Good soil is available at + 51.00 m. Assume ground level at site is + 54.00m Canal bank side slopes u/s and d/s 1H: 2V inside, 1.5 H: 1V outside

Design:

- (i) Waterway, number of vents. With 1m thick piers.
- (ii) Suitable abutments, wing walls and returns.
- (iii) Length and thickness of solid apron using Bligh's creep constant of 8.

 $(3 \times 10 = 30 \text{ marks})$

Draw to a suitable scale:

(i) Half longitudinal elevation an half section looking from d/s side.

(12 marks)

(ii) Half plan at top and half plan at foundation level.

(18 marks)