FIFTH SEMESTER B.TECH. (ENGINEERING) EXAMINATION, NOVEMBER 2018,

EC 09 506 - LINEAR INTEGRATED CIRCUITS

(Regular/Supplementary)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Design an inverting amplifier with a gain of 2.
- 2. State the classifications of filters.
- 3. Write the features of Instrumentation Amplifier.
- 4. Give any four non-linear applications of op-amp.
- 5. Write the expression for output triangle wave frequency of a waveform generator.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 1. Briefly explain the operation of V-I converter.
- 2. Obtain an expression for gain of the inverting and non-inverting amplifier.
- 3. Explain the operation of a peak detector circuit.
- 4. Explain the working of logarithmic amplifier with neat sketches.
- 5. Derive the expression for transfer function of a first order low-pass filter.
- 6. Briefly explain the working of RC phase shift oscillator.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

- Design an op-amp circuit for the following applications:
 - (a) Summing Amplifier.
 - (b) V-I converter.
 - (c) Voltage follower.

(3 + 4 + 3 = 10 marks)

- 2. Explain the op-amp circuit for measurement of following parameters:
 - (a) Open loop gain.
 - (b) Output resistance.
 - (c) Input resistance.

(3+3+4=10 marks)

3. Explain the operation of Integrator circuit and obtain an expression for its output voltage.

(10 marks)

0

- (a) Discuss the merits and demerits of weighted resistor DAC compared to R-2R Ladder DAC.
 - (b) Explain the R-2R ladder DAC with neat sketches.

(4 + 6 = 10 marks)

- 5. (a) Briefly explain the frequency response of a RC filter from its transfer function.
 - (b) Derive an expression for Bandwidth.

(6 + 4 = 10 marks)

Or

 design a second order band pass filter with a midband voltage gain of 40, corner frequency 160 Hz and a 3 db Bandwidth B = 14 Hz.

(10 marks)

- 7. (a) Explain the operation of pulse generator circuit using op-amp.
 - (b) Derive the expression for the period of symmetrical waveform.

(5 + 5 = 10 marks)

Or

8. Explain the operation of switching regulator with neat sketches.

(10 marks)

 $[4 \times 10 = 40 \text{ marks}]$