FIFTH SEMESTER B.TECH. (ENGINEERING) DEGREE NOVEMBER 2013

EC 09 501—DIGITAL SIGNAL PROCESSING

Time: Three Hours

Maximum: 70 Marks

Part A

Short answer questions.

- 1. Write the expressions of Discrete Fourier series analysis and synthesis pair.
- 2. How is the efficiency of the computation of DFT improved?
- 3. What is meant by round-off effects in digital filters?
- 4. Write the Bartlett window function.
- 5. What is extended parallelism?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

1. Determine the DFT of the sequence:

$$x(n) = \begin{cases} \frac{1}{4}, & \text{for } 0 \le n \le 2\\ 0, & \text{otherwise} \end{cases}.$$

- 2. Explain overlap-add method with example.
- 3. Draw the signal flow graph for the first order difference equation given by

$$y(n) = ay(n-1) + x(n) + bx(n-1)$$
.

- 4. Explain the effect of truncation for two's complement negative numbers.
- 5. For the analog transfer function :

 $H(s) = \frac{1}{(s+1)(s+2)}$. Determine H(z) using impulse invariant technique. Assume T = 1 sec.

6. Explain the working of accumulator.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all the questions.

1. Given $x(n) = \{0,1,2,3,4,5,6,7\}$, find x(k) using DIT FFT algorithm.

Or

- 2. Find linear convolution of $x(n) = \{1,2\}$ and $h(n) = \{1,2,4\}$ using circular convolution.
- 3. Realize the following IIR system function in direct form-I and direct form-II:

$$H(z) = \frac{1}{(1-az^{-1})(1+bz^{-1})}$$

Or

- Explain product quantization noise model and derive the product quantization noise model for cascaded 2nd order IIR system.
- 5. State and explain alternation theorem.

Or

6. Design a digital Butterworth filter to meet the constraint:

$$0.8 \le \left| \mathbf{H} \left(e^{jw} \right) \right| \le 1, 0 \le w \le 0.2 \pi$$

$$\left| \mathbf{H} \left(e^{jw} \right) \right| \le 0.2, 0.26 \pi \le w \le \pi$$

Explain 2nd design iteration in FFT processor with example.

Or

8. Draw the block diagram of single-bus architecture TMS processor and explain the operation.

 $(4 \times 10 = 40 \text{ marks})$