(Pages: 2)

Name.

Reg. No

FIFTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, NOVEMBER 2013

CS/PT CS 09 503—SIGNAL PROCESSING

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

Each question carries 2 marks.

- 1. Write the major classification of signals.
- 2. State the Parseval's theorem for Fourier transform.
- 3. What is amplitude spectrum?
- 4. What is aliasing?
- 5. What is zero input response?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions. Each question carries 5 marks.

- 1. Write short notes on Static and dynamic systems with suitable examples.
- 2. Explain how non-periodic signals can be represented by Fourier transform?
- 3. What are the basic concepts of BIBO stability?
- 4. How to find the solution to differential equations using Fourier transform?
- 5. Discuss about any two properties of Discrete Time Fourier Transform (DTFT).
- 6. Write notes on right-hand finite sequence and left-hand finite sequence.

 $(4 \times 5 = 20 \text{ marks})$

Part C

1. Explain about the properties of Linear Time-Invariant systems with suitable examples.

Or

2. Plot the following sequences:

(a)
$$x(n) = 2\delta(n+1) - \delta(n-4)$$
.

(b)
$$x(n) = \{0, 2, -1, 0, 1, 2, 1, 0, -1, 1\}.$$

3. Find the Fourier transform of the time function:

$$f(t) \approx 5[u(t+3) + u(t+2) - u(t-2) - u(t-3)].$$

Or

- 4. Write notes on Energy Spectral density and Phase Spectrum.
- 5. The impulse response of a discrete LTI system is $h(n) = \frac{1}{\pi} \sin\left(\frac{\pi}{4}\right) n$. Find the output response of the system when $x(n) = \frac{1}{\pi n} \sin\left(\frac{\pi}{2}\right) n$.

Or

- 6. Write notes on:
 - (a) Energy spectral density.
 - (b) Aliasing.
- 7. Explain about various methods of finding inverse z-transform.

Or

- 8. Find the z-transform of the following discrete-time signals including the region of convergence.
 - (a) $x(n) = e^{-3n} u(n-1)$.
 - (b) $x(nT) = (nT)^2 u(nT)$.

 $(4 \times 10 = 40 \text{ marks})$