

Civil Engineering

CE/PTCE 09 502—STRUCTURAL DESIGN-I

Time: Three Hours

Maximum: 70 Marks

- (1) Answer all questions from Part A.
- (2) Answer any four questions from Part B
- (3) Answer one question from each module in Part C.
- (4) All designs should be based on limit state method unless otherwise mentioned in the question.
- (5) Use of IS 456 permitted.
- (6) Any missing data may be assumed

Part A

- 1. Briefly explain anchorage.
- 2. Differentiate between limit state method and working stress method.
- 3. What are T and L beams?
- 4. Explain the limit state design steps for two way slabs when corners are not held down.
- 5. Differentiate between short columns and long columns.

 $(5 \times 2 = 10 \text{ marks})$

Part B

- 1. A balanced rectangular beam is singly reinforced with b = 200 mm and d = 300 mm. Determine the moment of resistance of the beam using working stress method. M-15 concrete and Fe-415 steel are used.
- 2. Design a singly reinforced beam to resist a factored bending moment of 80 kNm. Use M-25 concrete and Fe-415 steel.
- 3. Briefly explain the different design philosophies in RCC design.
- 4. Design a RCC floor slab for a room having inside dimensions 4 m x 10 m and supported on all four sides by a 40 cm thick brick wall. The superimposed load is 3 kN/m². Use M-20 concrete and Fe-415 steel. The design for bending moment is only to be done. Drawings are not required.
- 5. Explain the different types of slabs along with its structural behaviour.

Turn over

6. A reinforced concrete column 8 m long (effective) and 400 mm in diameter is reinforced with 8 bars of 20 mm diameter. Find the safe load the column can carry. Take $\sigma_{CC} = 4 \text{ N/mm}^2$ and $\sigma_{SC} = 130 \text{ N/mm}^2$. Use working stress method.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Module 1

1. For a balanced rectangular section, derive from first principles, the expression for moment of resistance using working stress method.

Or

2. Determine the moment of resistance of a singly reinforced beam 160 mm wide and 300 mm deep to the centre of reinforcement, if the stresses in steel and concrete are not to exceed 140 N/mm² and 5 N/mm^2 respectively. The reinforcement consists of 4 bars of 16 mm diameter. Take m = 18. If the above beam is used over an effective span of 5 m, find the maximum load the beam can carry, inclusive of its own weight. Working stress method should be followed.

(10 marks)

Module 2

3. Find the moment of resistance of a T beam with the following data: width of flange = 800 mm, width of rib = 200 mm, Thickness of slab = 120 mm. Effective depth = 400 mm, Tensile steel area = 3500 mm². Use M-20 concrete and Fe-415 steel.

Or

4. A rectangular beam 300 mm wide and 600 mm effective depth is reinforced with a tensile reinforcement of 9000 mm² and compressive reinforcement of 3000 mm². The compressive reinforcement has an effective cover of 50 mm. Determine the ultimate moment of resistance. Use M-20 concrete and Fe-415 steel.

(10 marks)

Module 3

5. Design a one-way slab with a clear span of 4 m, simply supported on 250 mm thick masonry walls and is subjected to a live load of 3 kN/m² using M-20 concrete and Fe-415 steel. Complete design, checks and detailing are required.

Or

6. Design a RC slab for a room 4 m \times 4.5 m measuring from inside. The thickness of the walls is 400 mm. The live load is $2.5 \, kN/m^2$. The edges are simply supported and corners are free to lift. Use M-20 concrete and Fe-415 steel.

(10 marks)

Model 4

7. Design a short circular column to carry an axial load of 700 kN. Use M-200 concrete. Take σ_{SC} = 130 N/mm². The working stress method should be followed.

Or

8. Design a short square column to carry an axial load of 800 kN. Use M-20 concrete. Take σ_{SC} = 130 N/mm². Use working stress method.

(10 marks)