-			4	-
	4	7	1	6 A
	4	1 7	4	7
~			-	v

	(60)	10000
(Page		9
(Pages	•	4

Name	**********************

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION JUNE 2008

CE 04 303—MECHANICS OF SOLIDS

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Assume additional data if required.

Part A

- I. (a) Derive relationship between Youngs modulus (E); Shear modulus, (G) and Poisson's ratio, (μ).
 - (b) Write short note on strain energy.
 - (c) Discuss on Pure bending.
 - (d) Show that for a rectangular section the distribution of shear stress is parabolic.
 - (e) Discuss on method of successive integration.
 - (f) Briefly explain conjugate beam method.
 - (g) Distinguish between Euler's formula and Rankine's formula.
 - (h) What is a helical spring? Differentiate between two types of helical springs.

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) A member ABCD is subjected to point loads, P_1 , P_2 , P_3 and P_4 as shown in Fig. 1. Calculate the force P_2 necessary for equilibrium, if $P_1 = 45$ kN, $P_3 = 450$ kN, $P_4 = 130$ kN. Determine the total elongation of the member, assuming the modulus of elasticity to be 2.1×10^5 N/mm.²

Fig. 1

Or

(b) At a point in a bracket the stresses on two mutually perpendicular planes are 120 N/mm.² tensile and 60 N/mm.². Find using Mohr's stress circle, the principle stresses and maximum shear stress at the point.

(15 marks)

Turn over

III. (a) A beam 5 m. long supported at the ends carries point loads 140 kN, 70 kN and 90 kN at distances 0.5 m., 2.5 m and 3.5 m respectively from the left end. Find maximum shear force and bending moment. Draw shear force diagram and Bending moment diagram.

Or

(b) A simply supported timber beam of span 5 m. has to carry a lead of 70 kN/m. Calculate dimensions of the beam, if the maximum permissible stress is limited to 8 N/mm². The Ratio of depth to width is to be 1.6. Calculate maximum shear stress in the beam.

(15 marks)

IV. (a) A simply supported beam of span 6 m is carrying uniformly distributed load of 60 kN/m, over its entire span. If E = 210 GPa and I = 8000 cm⁴, find slope at the support and deflection at the centre using moment area method.

Or

(b) A cantilever of length *l* carries a uniformly distributed load of w/metre over the whole length. Calculate slope and deflection at free end. Use conjugate beam method.

(15 marks)

V. (a) Cempare Crippling loads by Euler's and Rankine's and formulae for a tubular steel shut 3.0 m. long having outer and inner diameters 50 mm. and 45 mm. loaded through pin joints at both ends. Take yield stress as 320 11/mm.² and Rankine's constant as 1/7500.
 E = 2.1 × 10⁵ N/mm.²

Cir

(b) The air vessel in a torpedo is 550 mm, external diameter and 10 mm thick, the length being * 183 cm. Find change in external diameter and length when sharped to 10 o Normal 1 to man pressure. Take $E = 2.1 \times 10^5 \text{ N/m} \text{ s.}^2$ and Poisson's ratio as 0.3.

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$