(Pages: 2)

FOURTH SEMESTER B.TECH. (ENGINEERING) DEG APRIL 2013

EN 09 401 (A)-ENGINEERING MATHEMATICS-

(2009 admissions)

(Regular/Supplementary/Improvement)

[Common for ME, CE, PE, CH, BT, PT, AM and AN]

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Find the binomial distribution with mean 6 and variance 2.
- 2. A sample of 50 items taken from a population with S.D. 16 gave a mean 52.5. Find a 95% confidence interval of the population mean.
- 3. Reduce the differential equation:

$$x\frac{d^2y}{dx^2} + a\frac{dy}{dx} + k^2xy = 0$$
 to Bessel's equation.

4. Solve the partial differential equation:

$$\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$$

5. Form the partial differential equation by eliminating the arbitrary constants from $z = a^2x + b^2y + ab$.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 1. If the probability of a bad reaction from a certain injection is ·001, determine the chance that out of 2000 individuals more than three will get a bad reaction.
- 2. Given the following data of two distributions:

Mean S.D. Sample size
A 100 12 80
B 95 10 70

Test whether the difference between the sample mean is significant.

3. Show that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.

- 4. Show that $P_{2n}(0) = \frac{(-1)^n (2n)!}{2^{2n} (n!)^2}$.
- 5. Solve the partial differential equation:

$$\frac{y-z}{yz}p + \frac{z-x}{zx}q = \frac{x-y}{xy}$$

6. If
$$f(x) = \begin{cases} ke^{-\alpha^2 x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

is the p.d.f. of a random variable X. Find K, E (X) and variance of X.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

- 1. In sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 15 is 1. Out of 2000 such samples how many would be expected to contain:
 - (a) No defective.

- (b) Exactly 3 defectives.
- (c) Not more than 3 defectives.
- (d) At least 3 defectives.

Or

- 2. In a normal distribution, 5% of the items are under 60 and 40% are between 60 and 65. Find the mean and standard deviation of the distribution.
- 3. Two random samples drawn from 2 normal populations are as follows:

A 17 27 18 25 27 29 13 17 B 16 16 20 27 26 25 21

Test whether the samples are drawn from the same normal population.

Or

- 4. A sample analysis of examination results of 500 students, it was found that 280 students have failed, 170 have secured a third class, 90 have secured a second class and the rest, a first class. Do these figures support the general belief that above categories are in the ratio 4:3:2:1 respectively.
- 5. Prove that : $\frac{d}{dx}(xJ_n(x)J_{n+1}(x)) = x[J_n^2(x) J_{n+1}^2(x)].$

Or

- 6. Prove that: $(1-2xz+z^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x) z^n$.
- 7. Obtain D' Alembert's solution of one dimensional wave equation.

Or

8. Solve (a) $z^2 = 1 + p^2 + q^2$; (b) $q(p - \sin x) = \cos y$.