(Pages: 2)

FOURTH SEMESTER B.TECH. (ENGINEERING EXAMINATION, APRIL 2013

IT 09 404 - PRINCIPLES OF COMMUNICATION ENGINEERIN

(Regular/Supplementary/Improvement)

(2009 Scheme)

Time: Three Hours

Maximum: 70 Marks

Part A

- 1. Define Modulation.
- 2. A carrier wave of 2.5 kW is amplitude modulated by a message signal of 1 kHz to a depth of 50%. What is the total power of the amplitude modulated wave?
- 3. The following signals are passed as an Input to the Product modulator:

$$V_1 = V_m \cos W_m t$$

$$V_2 = V_c \cos W_c t$$
.

What is the output of the product modulator?

- 4. What is a quantization error?
- 5. What is heterodyning?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Give the frequency bands of electromagnetic spectrum and its applications.
- 7. What is the need for modulation?
- 8. Briefly explain the operation of a collector modulator.
- 9. What is a Ratio detector? Explain.
- 10. What is diversity reception? Name the various types of diversity reception techniques.
- 11. Compare low level and high level modulation systems.

 $(4 \times 5 = 20 \text{ marks})$

Part C

12. Derive an expression for the AM wave and its power relations.

Or

- 13. Derive an expression for the FM wave. Prove that it has Infinite number of sidebands using Bessel's functions.
- 14. Explain the operation of a Square Law Modulator.

Or

- 15. Explain the generation of:
 - (a) PWM wave.
 - (b) PAM wave.
- 16. Explain the operation of a Foster-Seeley Discriminator.

Or

- 17. Explain the demodulation of:
 - (a) PAM Wave.
 - (b) PWM wave.
- 18. With block diagram, explain the AM transmitter.

01

19. Explain the operation of a super heterodyne receiver.

 $(4 \times 10 = 40 \text{ marks})$