

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE MAY 2013

EC/PTEC 09 603—RADIATION AND PROPAGATION

(2009 Admission onwards)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions. Each question carries 2 marks.

- 1. Define noise temperature of an antenna.
- 2. How is antenna efficiency found?
- 3. What are scanning arrays?
- 4. What are super directive arrays?
- 5. What are ray paths?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions. Each question carries 5 marks.

- 1. Derive the expression for maximum effective aperture in terms of directivity.
- 2. How is directivity of an antenna found from HPBW?
- 3. Write few characteristics of Chebychev polynomial.
- 4. Write in brief the principle of tapering of arrays.
- 5. Explain in brief the working of slot antenna.
- 6. List out few atmospheric effects in space wave propagation.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

Each question carries 10 marks.

1. Derive the expression for far field components of an half-wave dipole.

Or

2. Find the directivity using actual formula and directivity from HPBW for an antenna with radiation intensity $U = \sin\theta \sin^2\phi$, $0 < \theta < \frac{\pi}{2}$ and $0 < \phi < \frac{\pi}{2}$.

Turn over

2 C 41236

 Derive the array factor, directions of pattern maxima, pattern minima and HPBW for an end-fire array of n-isotropic sources.

Or

- Calculate the Dolph-Chebychev distribution which yields the optimum pattern. Given that the beam width between first nulls is 22.5° and the number of elements in the array is 6. Spacing between the adjacent elements is ½.
- 5. Derive the e.m.f. equation for circular loop antenna.

Or

- Draw the structure of log-periodic dipole array antenna and Explain its operation and design procedure.
- 7. Explain the various methods of calculating MUF.

Or

8. Explain the Normal refraction of radio waves by tropospheric layer.

 $(4 \times 10 = 40 \text{ marks})$