(Pages : 2)

FOURTH SEMESTER B.TECH. (ENGINEERING) DEGREE APRIL 2013

EC 09 406/PTEC 09 405—SOLID STATE DEVICES

(2009 Scheme)

(Regular/Supplementary/Improvement)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions. Short answer questions.

- 1. What is Fermi level?
- 2. State Einstein's relation.
- 3. Why JFET is called voltage controlled device?
- 4. What is base-width effect in BJT?
- 5. Write in brief the significance of threshold voltage of MOSFET.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Derive the expression for electron and hole concentration of semiconductor doped with trivalent impurity.
- 7. Derive the expression for diffusion current in semiconductors.
- 8. A constant 10V Zener diode with R = 220 Ω as shown in the circuit below has I_{min} = 0.25 mA and I_{max} = 100 mA. Find the range of input voltage over which the output is regulated.

- 9. Explain the operation of n-channel JFET.
- 10. Draw the structure of power MOSFET and explain its operation.
- 11. Explain the working of MOS capacitor with diagram.

 $(4 \times 5 = 20 \text{ marks})$

Part C

12. (a) Explain with neat diagrams direct and indirect bandgap in semiconductors.

Or

- (b) Derive the expression for conductivity and mobility in intrinsic semiconductors.
- 13. (a) Derive the expression for space-charge capacitance in PN junction.

O

- (b) Explain the construction, working and characteristics of tunnel diode with neat diagrams.
- 14. (a) Explain the construction and working of hetero junction bipolar transistors.

Or

- (b) Explain the working of p-channel JFET and its drain and transfer characteristics.
- 15. (a) Explain the construction, working and characteristics of p-channel E-MOSFET with diagrams.

O

(b) Explain the different methods of turning-off SCR.

 $(4 \times 10 = 40 \text{ marks})$