(Pages: 3)

FOURTH SEMESTER B.TECH. (ENGINEERING) DEGREE APRIL 2013

EE 09 403/PT EE 09 402—SIGNALS AND SYSTEMS

(2009 Scheme—Regular/Supplementary/Improvement)

Time: Three Hours

Maximum: 70 Marks

Part A

All questions are compulsory.

- 1. Check whether the following system is linear or causal $y(t) = x(t^2)$.
- 2. State the convolution property of Fourier transform.
- 3. State sampling theorem.
- 4. What are the properties of region of convergence.
- 5. State initial value theorem of Z-transform.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

1. Sketch and label the following signals:

(a) $x(2t+1)$			(1 mark)
(a) $\lambda(2i+1)$. 20		

(b)
$$[x(t) + x(-t)]u(t)$$
 (1 mark)

(c)
$$X(4-t/2)$$
 (1 mark)

(d)
$$X[n-1)^2$$
 (1 mark)

(e)
$$X[n]u[3-n]$$

- 2. State and prove Parseval's power theorem and Rayleigh's energy theorem
- 3. Find the frequency response of the following causal system:

$$y[n] = \frac{1}{2}x[n] + x[n-1].$$

- 4. Find the z-transform of $x(n) = a^n u(n-1)$.
- 5. Find whether the following signal is periodic or not, determine its fundamental period:

$$x(t) = [\cos(2t - \Pi/3)]^2$$
.

6. Fin the DTFT of the following:

$$x[n] = 5 n u[n].$$

 $(4 \times 5 = 20 \text{ marks})$

Part C

 (a) Determine whether the following systems are static or Dynamic, Linear or Non-linear, Shift variant or Invariant, Causal or Non-causal, Stable or unstable

$$y(t) = x(t+10) + x(t)$$
. (5 marks)

$$dy(t) dt + 10 y(t) = x(t). ag{5 marks}$$

Or

- (b) Explain the Classification of signals with exampels.
- 2. (a) State and prove properties of Fourier transform.

Or

(b) For the Laplace transform of

$$x(t) = e^{t} \sin 2t \qquad t \le 0$$
$$= 0 \qquad t > 0$$

indicate the location of its poles and its region of convergence.

3. (a) Determine the Fourier transform of the discrete time rectangular pulse of amplitude A and length L ie x [n] = A for 0 = n = L - 10 otherwise.

Or

(b) Consider a causal Discrete time LTI system whose input x [n] and output y [n] are related by the difference equation:

 $Y[n] - \frac{1}{4}y[n-1] = x[n]$. Find the Fourier series representation of output y[n] if $x[n] = \sin(n 3\Pi/4)$.

4. (a) State and prove the time delay theorem of z-transform.

Or

(b) Determine the inverse z-transform of the following function:

(i)
$$x(z) = 1/(1+z-1)(1-z-1)2 \text{ ROC}: |Z>1|$$

(6 marks)

(ii)
$$x(z) = 1/(1-9z^{-1})$$

(4 marks)

 $[4 \times 10 = 40 \text{ marks}]$