(Pages : 2)

SIXTH SEMESTER B.TECH. (ENGINEERING) DECREE
EXAMINATION, MAY 2013

AI-09 604—ADVANCED CONTROL THEORY

(2009 Admission onwards)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Define Ackermann's formula.
- 2. Draw the structure of a full Order Observer.
- 3. Define State transition matrix. List out its properties.
- 4. Write the transfer function of a PI-controller.
- 5. Draw the graphical representation of stable, asymptotically stable, and unstable system in the sense of Liapunov.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. What is Pole placement by state feedback and state Observer.
- 7. Find the stability of the following system using Jury's test:

$$F(z) = 5z^2 - 2z + 2 = 0.$$

8. Construct a state model for a system characterized by the difference equations

$$y(k+2)+5y(k+1)+6y(k)=u(k)$$

$$y(0) = y(1) = 0$$
; $T = 1$ sec.

- 9. What is P-controller and what are its characteristics?
- 10. Show that the following quadratic form is positive definite:-

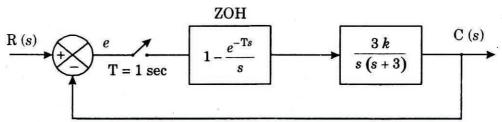
$$V(x) = 10_1^2 + 4x_2^2 + x_3^2 + 2x_1 x_2 - 2x_2 x_3 - 4x_1 x_3.$$

11. Explain Liapunov stability analysis of LTI Systems.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.


12. (A) Investigate the controllability and absorbability of the following system :—

$$\begin{bmatrix} \ddot{x}_1 \\ \dot{x}_2^{-1} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u.$$

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Or

- (B) Consider the system with Transfer function $G(s) = \frac{10}{s(s+1)(s+2)}$. Design a state feedback controller so that the closed loop poles are placed at $-2, -1 \pm j1$.
- 13. (A) Obtain the state model of the following system $G(s) = \frac{(s+3)}{(s+5)(s+2)^2}$.
 - (B) Find the range of gains, K to make the system stable

14. (A) Explain the effects of proportional, Integral, derivative and composite control modes on the response of a controlled process.

Or

- (B) Write short notes on:
 - (i) Ziegler Nichol's tuning.
 - (ii) Cohen and Coon tuning.
- 15. (A) Determine the stability of the equilibrium state of the following system using Liapunov method.

$$\dot{x}_1 = -x_1 - 2x_2$$

$$\dot{x}_2 = x_1 - 4x_2$$

the Liapunov functions.

Or

(B) Explain robust Internal model control system in detail.