

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE MAY 2013

EC/IC/AI 04 705 F-NUMERICAL ANALYSIS

(2004 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

- I. (a) Find the real root of $3x \cos x 1 = 0$ by Newton's method, correct to 4 decimal places.
 - (b) Solve for a positive root of $x = \cos x$ by false position method.
 - (c) Solve by Gauss elimination method:

$$x + y + z + w = 2$$

$$2x - y + 2z - w = -5$$

$$3x + 2y + 3z + 4w = 7$$

$$x-2y-3z+2w=5.$$

(d) Solve:

$$10x - 5y - 2z = 3$$

$$4x - 10y + 3z = -3$$

$$x + 6y + 10z = -3$$

by Gauss-Seidel method. (only 3 iterations)

- (e) Discuss the truncation error in Simpson's formula.
- (f) Evaluate $\int_{0}^{6} \frac{dx}{1+x}$ by Trapezoidal rule and Simpson's rule.
- (g) Solve for y(0.01) and y(0.02) given $\frac{dy}{dx} + y = 0$ and y(0) = 1 by Euler method.
- (h) Derive Bender-Schmidt recurrence equation in solving $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) If N is a positive number, derive iterative formulae to obtain \sqrt{N} and $\frac{1}{N}$ and hence evaluate $\sqrt{5}$ and $\frac{1}{19}$.

Or

- (b) Solve $x^3 9x^2 + 18x = 6$ by Graeffe's method (3 squarings).
- III. (a) Using power method, find all the eigen values of $\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

Or

(b) By Crout's method, solve:

$$2x+3y+z=-1$$
$$5x+y+z=9$$
$$3x+2y+4z=11.$$

IV. (a) Using Stirlings formula find y(1.22) from the table below:

 $x: 1.0 \quad 1.1 \quad 1.2 \quad 1.3 \quad 1.4 \quad 1.5 \quad 1.6$ $y: 0.8415 \quad 0.8912 \quad 0.9320 \quad 0.9636 \quad 0.9855 \quad 0.9975 \quad 0.9996$

(b) From the table below, find f(x) and f(6) using Newton's interpolation formula.

V. (a) (i) Using Runge-Kutta method of 4th order find y(0.2) given $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0) = 1 taking h = 0.2.

(8 marks)

(ii) Solve $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown below in the figure.

(7 marks)

(b) (i) Compute y(0.25) by modified Euler method given $\frac{dy}{dx} = 2xy$, y(0) = 1.

(8 marks)

(ii) Solve $\frac{\partial^2 u}{\partial x^2} = 16 \frac{\partial u}{\partial t}$, 0 < x < 1, t > 0 given u(x, 0) = 0, u(0, t) = 0; u(1, t) = 100 t. Compute u for one step in t direction taking $h = \frac{1}{4}$.

(7 marks)

 $[4 \times 15 = 60 \text{ marks}]$