

Applied Electronics and Instrumentation Engineering

AI/BM 04 406 - LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

- I. (a) Explain the features and applications of CMOS technologies.
 - (b) Explain the diffusion and Ion implantation processes of IC fabrication.
 - (c) List and explain the characteristics of an Ideal op-amp.
 - (d) Define and explain: (i) CMRR; (ii) PSRR.
 - (e) Derive the voltage gain for Op-amp voltage follower.
 - (f) Draw op-amp peak detector and explain.
 - (g) State and derive Barkhausen criterion for Op-amp oscillators.
 - (h) Explain the operation of Op-amp universal active filters.

 $(8 \times 5 = 40 \text{ marks})$

II. (a) Explain the fabrication steps of IC with neat sketches.

(15 marks)

Or

- (b) (i) Give an account on Monolithic IC technology.
 - (ii) Differentiate thin film from thick film technology.

(7 + 8 = 15 marks)

- III. (a) (i) Explain the frequency response of an op-amp with neat sketches.
 - (ii) Draw op-amp block diagram and explain it in detail.

(7 + 8 = 15 marks)

Or

- (b) Explain in brief about:
 - (i) Op-amp compensating networks.
 - (ii) Op-amp internal circuit.

(7 + 8 = 15 marks)

D 33174

IV. (a) Explain in detail the typical applications of Op-amp with neat diagrams.

(15 marks)

Or

- (b) Give an account on:
 - (i) Op-amp timing mark generator.
 - (ii) V-I converter with floating and fixed loads.

(7 + 8 = 15 marks)

V. (a) Explain the operating of Op-amp Wien-bridge oscillator with a neat diagram. Derive the condition for oscillation.

(15 marks)

Or

(b) Explain the principle of op-amp sawtooth wave generator with a neat diagram.

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$