FOURTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, APRIL 2013

EC/AI/IC 2K 403/EC 2K 403—SIGNALS AND SYSTEM

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all question.
Each question carries 5 marks.

- I. (a) Define the following terms with an example for each:
 - (i) Discrete signal.
- (ii) Analog signal.
- (iii) Random signal.
- (iv) Energy signal.

- (v) Power Signal.
- (b) What is a linear time invariant system? Give an example of such a system. Justify your answer.
- (c) Explain, with suitable examples, correlation of deterministic signals.
- (d) Explain sampling theories.
- (e) Define discrete Fourier transform and Laplace transform.
- (f) Discuss on the stability of a discrete time LTI system.
- (g) Explain about the unit circle on complex z-plane.
- (h) Find the z-transform of $n^2u(n)$.

 $(8 \times 5 = 40 \text{ marks})$

Part B

Answer all question.
Each question carries 15 marks.

- II. (a) Check for the stability of the following systems:-
 - (i) $y(n) = \cos[x(n)]$.
 - (ii) y(nT) = 2x(nT) + x(nT T) + 2y(nT T).

Or

(b) Find the impulse response of a system described by the different

$$\tau_0 \frac{dy(t)}{dt} + y(t) = x(t), -\infty < t < \infty.$$

Turn over

III. (a) Define Hilbert transform. State and prove its properties.

Or

- (b) (i) Write notes on power spectral density of a signal.
 - (ii) Discuss the condition for distortionless transmission through an LTI system.
- IV. (a) Derive the DFT of the sample data sequence {1, 1, 2, 2, 3, 3} and compute the corresponding amplitude and phase spectrum.

Or

- (b) Use Convolution, to find the:
 - (i) Inverse Laplace transform of $\frac{1}{s(s+1)}$.
 - (ii) Discuss on the frequency response of a system using s-plane.
- V. (a) Find the inverse z-transform of:

(i)
$$H(z) = \frac{-4 + 8z^{-1}}{1 + 6z^{-1} + 8z^{-2}}$$
.

(ii) State and prove any 4 properties of z-transform.

O

(b) Discuss about the frequency response of a system using z-plane.

 $(4 \times 15 = 60 \text{ marks})$