

COMBINED FIRST AND SECOND SEMESTER B.TECH (EN DEGREE EXAMINATION, APRIL 2013

EN 2K 102 - MATHEMATICS - II (Common to All Branches)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

- I (a) Solve $(\cos x \tan y + \cos(x+y))dx + [\sin x \sec^2 y + \cos(x+y)]dy = 0$.
 - (b) Solve $(D^3 6D^2 + 11D 6)y = e^{-3x}$.
 - (c) Prove that $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$.
 - (d) Evaluate $\int te^{-t} \sin^2 t$.
 - (e) Prove that $\nabla \cdot (\phi \widetilde{A}) = \phi \nabla \cdot \overline{A} + \nabla \phi \cdot \overline{A}$.
 - (f) Find the directional derivative of the function $f = x^2 y^2 + 2z^3$ at the point p(1,2,3) in the direction of the line PQ where Q is the point (5, 0, 4).
 - (g) If $\overline{F} = (3x^2 + 6y)i 14yzj + 20xz^2k$ evaluate the line integral $\int_{c} \overline{F} \cdot d\overline{r}$ from (0,0,0) to (1,1,1) along the path c represented by x = t, $y = t^2$, z = t.
 - (h) Find $\iint_{s} F \cdot \hat{n} ds$ where $\overline{F} = (2x + 3z)i (xz + y)j + (y^2 + 2z)k$ and s is the surface of the sphere having centre at (3, -1, 2) and radius 3.

 $(8 \times 5 = 40 \text{ Marks})$

Part B

- II (a) (i) Solve $\frac{d^2y}{dx^2} \frac{2dy}{dx} + y = xe^x \sin x$. (7)
 - (ii) Solve by method of variation of parameters, the differential equation $\frac{d^2y}{dx^2} + 4y = 4\tan 2x.$ (8)

(Orl

- (b) (i) Find the orthogonal trajectories of the family of ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (7)
 - (ii) An electric circuit consists of an inductance of 0.1 henry, a resistance of 20 ohms and a condenser of capacitance 25 micro-farads. Find the charge q and the current i at any time t, given that at t = 0, q = 0.05 coulomb, $i = \frac{dq}{dt} = 0$ when t = 0.
- III (a) (i) Find $L\left(\int_{0}^{t} e^{t} \frac{\sin t}{t} dt\right)$ (7)
 - (ii) Find $L^{-1}\left(\log\left(\frac{s(s+1)}{s^2+4}\right)\right)$ (8)

(b) (i) Find the Laplace transform of the rectified semi-wave function defined by

$$f(t) = \begin{cases} \sin wt, & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$$
 (7)

(ii) Solve
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-x}$$
, $y(0) = y'(0) = 1$. (8)

- IV (a) (i) Find the angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 y^2 + 2z = 1$ at the point (1, -2, 1).
 - (ii) Find the constants a, b, c so that $\overline{F} = (x+2y+az)i + (bx-3y-z)j + (4x+cy+2z)k$ is irrotational. Find a scalar function ϕ such that $\overline{F} = \operatorname{grad} \phi$.

 (8)

(Or)

- (b) (i) If r = xi + yj + zk prove that
 - (1) $div\left(r^{n}r\right) = (n+3)r^{n}.$
 - (2) $\operatorname{curl}\left(r^{n}\overline{r}\right) = \overline{0}$.

(3)
$$\frac{\overline{r}}{r^3}$$
 is solenoidal. (7)

- (ii) If $\overline{F} = grad\left(x^3 + y^3 + z^3 3xyz\right)$ find div \overline{F} , curl \overline{F} , curl curl \overline{F} , div curl \overline{F} .

 (8)
- V (a) Verify Green's theorem in the plane for $\oint_c (xy + y^2) dx + x^2 dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$. (15)
 - (b) Verify divergence theorem for $\overline{F} = yi + xj + z^2k$ over the cylindrical region bounded by $x^2 + y^2 = a^2$, z = 0 and z = h. (15)

 $(4 \times 15 = 60 \text{ Marks})$
