

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE OCTOBER 2012

Electrical and Electronics Engineering

EE 09 304/PTEE 09 303-ELECTROMAGNETIC FIELD THEORY

(2009 Admissions)

Time: Three Hours

- Maximum: 70 Marks

Part A

Answer all questions.

- 1. State Gauss's law.
- 2. Define Inductance.
- 3. What is meant by displacement current?
- 4. Define uniform plane electromagnetic wave.
- Define phase velocity.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Express the vector field $G = 8 \sin \phi \vec{a}_{\theta}$ in:
 - (a) Rectangular components.
 - (b) Cylindrical components.
- 7. Two infinite plane sheets are separated by a distance 'd'. The first has a charge of $+\sigma$ C per unit area, the second has a charge of $-\sigma$ C per unit area. Find the electric field intensity at any point between them.
- 8. Fig. 1 shows a planar dielectric slab with free space on either side. Assuming a constant field E_2 within the slab, Express E_3 in terms of E_1 . Prove your answer.

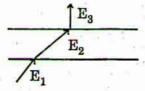


Fig. 1.

9. A parallel plate capacitor with area 0.3 m² and separation 5.5 mm contains three dielectrics with interfaces normal to E and D as follows:

 $\varepsilon_n = 3.0$, $d_1 = 1.0$ mm; $\varepsilon_n = 3.0$ $d_2 = 2.0$ mm; $\varepsilon_n = 6.0$, $d_3 = 2.5$ mm. Find the capacitance.

- 10. Discuss Pointing Theorem.
- 11. Derive Maxwell's equation from Ampere's law.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

12. (a) Three point charges in free space are located as follows:

 $+5 \times 10^{-8}$ c at (0, 0) m, -6×10^{-8} c at (0, 4) m and $+4 \times 10^{-8}$ c at (0, 4) m

- (i) Find the electric field intensity and electric flux density at (3, 4) m.
- (ii) What is the total electric flux over a sphere of 5 m radius with centre at (0, 0).

Or

- (b) Let a point charge $Q_1 = 25$ nC be located at P_1 (4, -2, 7) and a charge $Q_2 = 60$ nC be at P_2 (-3, 4, -2,). Assume both the charges are in free space.
 - (i) Find E at P₃ (1, 2, 3)
 - (ii) At what point on the y-axis is $E_y = 0$?
- 13. (a) Two circular coils are located in free space at the z=0 m plane and z=5 m plane, centered about the axis. The first coil having a radius of 1 m carries a current of 10 A. The second coil having a radius of 0.5 m carries a current 20 A. (both the coil currents one in anti clockwise direction) Calculate the magnetic field intensity at (0, 0, 2.5). Derive the formula used.

Or

- (b) A shielded power cable has a polyethylene insulation for which ε_r = 2.26 and the dielectric strength is 18.1 MV/m. What is the upper limit of voltage on the inner conductor with respect to the shield when the inner conductor has a radius of 1 cm and the inner side of the concentric shield is at radius of 8 cm?
- 14. (a) Derive the wave equation for a conducting medium.

Or

- (b) Explain various types of wave polarization.
- 15. (a) Write short notes on:
 - (i) Standing wave ratio.
 - (ii) Impedance matching.

Or

(b) State and explain law of reflection and law of refraction.

 $(4 \times 10 = 40 \text{ marks})$