## THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE DECEMBER 2012

Electrical and Electronics Engineering

EE 04 306-ELECTRIC CIRCUIT THEORY

(2004 Scheme)

Time: Three Hours

## Part A

Maximum: 100 Marks

- I. 1 A three-phase delta connected load has  $Z_{ab} = (100 + j0) \Omega$ ,  $Z_{bc} = (-j100) \Omega$  and  $Z_{ca} = (70.7 = j70.7) \Omega$  are connected to a balanced 3-phase 400 V supply. Determine the line currents  $l_a$ ,  $l_b$  and  $l_c$ . Assume the phase sequence abc.
  - 2 A three-phase three-wire 300 V ACB system feeds the unbalanced Y-connected load shown in Fig. 1 Find the line currents and the phase voltages of the load. Also determine the displacement neutral voltage  $V_{ON}$ .  $\longrightarrow I_A$  A



- Fig. 1
- 3 Find the Laplace inverse of  $\frac{1}{s(s+4)}$  using convolution integral.
- 4 Realize the following reactance function in four canonic forms

$$\frac{\left(s^2+1\right)\left(s^2+6.25\right)\left(s^2+25\right)}{s\left(s^2+4.5\right)\left(s^2+9\right)}.$$

5 Determine the transmission parameter A of the network in Fig. 2.



Turn over

- 6 If a T section of a constant k low pass filter has series inductance 85 mH and shunt capacitance 0.025  $\mu$ F, calculate its cut-off frequency and the nominal design impedance  $R_0$ .
- 7 Check whether the polynomial  $s^4 + s^3 + 7s^2 + 4s + 6$  is Hurwitz or not.
- 8 Draw the oriented graph of the network in Fig. 3 and write the incidence matrix.



Part B

 $(8 \times 5 = 40 \text{ marks})$ 

- II. (a) Consider the circuit in Fig. 4. If  $V_{an}=100 \angle 0^{\circ} V$ ,  $V_{bn}=60 \angle 60^{\circ} V$ ,  $V_{cn}=60 \angle 120^{\circ} V$ ,  $X_s=12 \Omega$ , and  $X_{ab}=X_{bc}=X_{ca}=5 \Omega$ 
  - (i) Calculate  $I_s$ ,  $I_b$ , and  $I_c$  without using symmetrical components.
  - (ii) Calculate Ia, Ib, and Ic using symmetrical components.



Fig. 4
Or

(b) Find  $I_1$  and  $I_2$  in the circuit of Fig. 5. Calculate the power absorbed by the 4- $\Omega$  resistor.



III. (a) If V<sub>C</sub> (0) 2V with the polarities in Fig. 6, write a suitable differential equation and using Laplace transform find V<sub>-</sub>(t)



- (b) For the network function  $V(s) = \frac{5(s+5)}{(s+2)(s+7)}$ , draw pole-zero plot and hence obtain time domain response of voltage.
- IV. (a) The z parameters of a two port network are  $z_{11} = 20 \Omega$ ,  $z_{22} = 30 \Omega$ ,  $z_{12} = z_{21} = 10 \Omega$ . Find the y and ABCD parameters of the network.

Or

- (b) Design a T-section and a  $\pi$  section constant k high pass filter having cut-off frequency of 14 kHz and nominal impedance of  $R_0 = 600~\Omega$ . Also determine (i) its characteristic impedance and phase constant at 26 kHz, and (ii) attenuation at 6 kHz.
- V. (a) Find the Foster Form I and Cauer Form I of the impedance function  $Z(s) = \frac{(s+4)(s+6)}{(s+3)(s+5)}$ , if possible.

Or

(b) For the circuit in Fig. 7, obtain  $\frac{V_2}{V_s}$ . If  $V_s = \cos \omega t$ , determine  $\omega = \omega_x$  for which the output is real.



 $(4 \times 15 = 60 \text{ marks})$