(Pages: 2)

NameO

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGRE JUNE 2012

EE 2K 702—DIGITAL SIGNAL PROCESSING

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

- I. (a) Explain with suitable example:
 - (i) Linear shift invariant system.
 - (ii) Stable system.
 - (b) Explain:
 - (i) Sampling of continuous time signals.
 - (ii) Fourier transform of a signal.
 - (c) Discuss the following:
 - (i) FFT.
 - (ii) Convolution.
 - (d) Discuss any one FFT algorithm.
 - (e) Explain the parameter quantisation effect.
 - (f) Explain the features of a fixed point DSP core architecture.
 - (g) Explain about frequency prewarping.
 - (h) What are FIR and IIR filters Compare FIR and IIR filters.

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) What is z-transform of a signal? State and prove its properties.

Or

- (b) (i) Find the Z-transform of $x(n) = 2^n u(n-2)$.
 - (ii) Find the inverse z- transform of the following X (z) by partial fraction expansion method

$$X(z) = \frac{z+2}{2z^2-7z+3}$$
 if ROC is $\frac{1}{2} < |z| < 3$.

III. (a) What is DFT of a signal? State and prove its properties.

Or

- (b) (i) Given $x(n) = 2^n$ and N = 8, find X (K) using DIT FFT algorithm.
 - (ii) Find the DFTs of the sequence $x(n) = \cos \frac{n\pi}{2}$, where N = 4 using DIF FFT algorithm.
- IV. (a) Find the lattice-ladder structure of the following system function

$$H(z) = \frac{1 + 2z^{-1} + 3z^{-2}}{1 + 0.5 z^{-1} + 0.125 z^{-2}}.$$

Or

- (b) Explain the architecture of a floating point digital signal processor.
- V. (a) Explain the finite word length effect in DSP.

Or

(b) (i) Use the backward difference for derivative and convert the analog filter into digital filter

$$H(s) = \frac{1}{(s+0.1)^2+9}$$
.

(ii) Using impulse invariant technique find H (z). Assume T = 1s H (s) = $\frac{1}{(s+1)(s+2)}$.

 $(4 \times 15 = 60 \text{ marks})$