

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE OCTOBER 2012

Electronics and Communication Engineering

EC 09 303/PTEC 09 302-NETWORK ANALYSIS AND SYNTHESIS

(2009 Admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- State superposition theorem.
- 2. Draw the circuit diagram of a passive integrator.
- 3. State necessary conditions for a driving point function.
- 4. What is a constant K-filter?
- 5. Test whether the polynomial $P(s) = s^4 + s^3 + 4s^2 + 2s + 3$ is Hurwitz.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

1. Find current through each resistor in the circuit using Nodal analysis for Figure (1).

2. Find driving point admittance Y (S) for network shown in Figure (2).

Turn over

- 3. List out the properties of positive real functions.
- 4. Find Z parameters for the network shown in Figure (3).

Fig. 3.

- 5. Explain various types of filters.
- 6. Obtain the pulse response of a series RC circuit.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer one question from each module.

MODULE I

1. A ramp voltage V = 5 r (t - 2) is applied in a series RC circuit. Find the response if $R = 1 \Omega$ and C = 0.25 Farad.

(10 marks)

O

2. Find the power loss in the 10 Ω resistor using Mesh analysis in Figure (4).

Fig. 4.

MODULE II

3. Given transform current in a network as $I(s) = \frac{s}{(s+2)(s^2+2s+2)}$. Draw the pole-zero plot and obtain time domain response.

(10 marks)

Or

4. Obtain Y-parameters of network shown in Figure (5).

Fig. 5.

(10 marks)

MODULE III

5. Synthesize a Chebyshev low pass filter to meet the specifications: Load resistor $R_L = 600 \, \Omega$, $\frac{1}{2} \, dB$ Ripple within pass band, cut off frequency 5×10^5 rad/sec. and at 1.5×10^6 rad/sec. Magnitude must be down to 30 dB.

Or

6. Transform a low pass filter into high pass filter.

MODULE IV

7. Given $Z(S) = \frac{s^4 + 7s^2 + 9}{s(s^2 + 4)}$. Realize LC network using Cauer forms I and II.

(10 marks)

Or

8. Synthesize the given impedance function $Z(s) = \frac{(s+2)(s+4)}{(s+1)(s+5)}$ using Foster Forms I and II.

(10 marks)

 $[4 \times 10 = 40 \text{ marks}]$