SEVENTH SEMESTER B.TECH. (ENGINEERING) JUNE 2012

DEGREE EXAMINATION

EC 2K 703—INFORMATION THEORY AND CO

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

- I. (a) Explain the properties of entropy.
 - (b) Write notes on Binary Symmetric Channel.
 - (c) Write notes on parity check matrices of linea block codes.
 - (d) Explain the decoding of linear block codes.
 - (e) Explain the construction of Galois field.
 - (f) Explain the features of BCH codes.
 - (g) Draw the trellis diagram of a convolutional coder of constraint length 8 and rate efficiency 1/2.
 - (h) Draw the state diagram and tree diagram of convolutional codes.

 $(8 \times 5 = 40 \text{ marks})$

II. (a) State and prove channel coding theorem.

Or

- (b) (i) Encode the following source using Shannon Fano procedure $p(x) = \{0.2, 0.15, 0.25, 0.4\}$. Find the efficiency of the code.
 - (ii) Write notes on Lembel Ziv coding.
- III. (a) Explain the encoding of linear block codes. Explain the error detection and correction capabilities of linear block codes.

Or

- (b) Explain the generation and decoding of cyclic codes.
- IV. (a) (i) Explain the properties of Galois field.
 - (ii) Write note on groups, fields and binary field arithmetic.

Or

- (b) (i) Explain the encoding of Reed Solomon Codes.
 - (ii) Show that Reed Solomon code is the maximum distance separable code and its minimum distance is n k + 1. Give any five applications of Reed Solomon codes.
- V. (a) Explain sequential decoding of convolutional codes.

Or

(b) Explain maximum likelihood decoding of convolutional codes.

 $(4 \times 15 = 60 \text{ marks})$