

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE OCTOBER 2012

IT /CS 09 306 / PTCS 09 305—SWITCHING THEORY AND LOGI

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- Convert the binary number 1101. 0110111 to octal number.
- 2. Draw the logic diagram for exclusive NOR gate.
- 3. Define Prime cube theorem.
- 4. What is meant by fault tolerance?
- 5. Give two applications for shift registers.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

6. Convert the following expressions to sum-of-product forms:

$$(A+C)(ABC+ACD)$$
 and $(A+\overline{B}C)D$.

7. Implement the following using NAND gates:

$$\overline{A}$$
 $\left[B + \overline{C}(D + E)\right]$ and $\left(\overline{A}\overline{B} + \overline{CD}\right)$.

- 8. Write notes on Read Only Memory.
- 9. Explain PLA folding.
- 10. Illustrate the procedure for designing sequential circuits.
- 11. Write notes on state tables and diagrams.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

12. (a) Apply DeMorgan's theorems to the following:

$$\overline{\overline{AB}(CD + \overline{EF})(\overline{AB} + \overline{CD})}$$
 and $\overline{(A + \overline{B} + C + \overline{D})} + \overline{ABCD}$

- (b) Explain the simplification using Quine-McClusky method.
- 13. (a) Describe the working of a multiplexer with suitable logic diagram and truth table.

O

- (b) Explain the operation of two-digit BCD-to-binary converter using full-adders.
- 14. (a) Write notes on PLA minimization.

Or

- (b) Write notes on fault classes and fault models.
- 15. (a) Illustrate the operation of 4-bit parallel- in parallel-out shift registers.

Or

(b) Explain the operation of a three bit synchronous counter with its timing diagram.

 $(4 \times 10 = 40 \text{ marks})$