(Pages: 2)

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE OCTOBER 2012

Applied Electronics and Instrumentation

AI 09 305—DIGITAL SYSTEMS

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Convert 22.20₁₀ to its binary equivalent.
- 2. Compare 1's complement and 2's complement form.
- 3. Design a Half Adder.
- 4. Covert JK flip flop into a D flip flop.
- 5. What is a totem pole output?

 $(5 \times 2 = 10 \text{ marks})$

Part B

- 6. Write a note on Error detecting Codes.
- 7. State and prove De Morgan's theorem.
- 8. Simplify $F = (A + \overline{B} + \overline{C})(A + \overline{B} + C)$.
- 9. Design a Binary-Gray decoder.
- 10. How frequency division is achieved using flip flops? Give the general expression for it.
- 11. State the condition for state equivalence. Give an example.

 $(4 \times 5 = 20 \text{ marks})$

Part C

12. (a) Explain any one Error detecting and Correcting code.

Oi

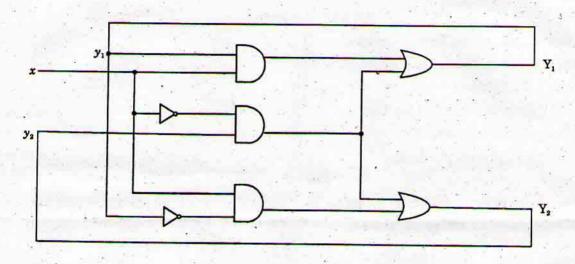
(b) Determine the prime implicants of the function.

$$F(A, B, C, D) = \Sigma(0, 1, 2, 3, 5, 6, 7, 8, 11, 13).$$

13. (a) Design an octal to binary encoder.

Or

- (b) Discuss in detail about:
 - (i) Static RAM.
 - (ii) Dynamic RAM.


14. (a) Design a 3-bit bidirectional shift register.

Or

- (b) Explain the features of:
 - (i) TTL.
 - (ii) ECL.
 - (iii) CMOS.

logics.

15. (a) Obtain the transition table and flow table for the given asynchronous sequential circuit.

Or

(b) Design a serial parity generator using the asynchronous FSM technique.

 $(4 \times 10 = 40 \text{ marks})$