(Pages: 2)

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE JUNE 2012

EXAMINATION

EC 04 602—DIGITAL SIGNAL PROCESSING

Time: Three Hours

- I. (a) Discuss the relationship of DFT to other transforms.
 - (b) Discuss on wavelet transforms.
 - (c) Obtain the direct form I and II realisation for the system defined by

H(z) =
$$\left[1 - 0.28z^{-1} + \left(\frac{2}{8}\right)z^{-2}\right] \left[1 - \frac{1}{8}z^{-1} - 0.5z^{-2}\right]$$

- (d) Explain signal flow graphs using suitable example.
- (e) Use the backward difference for the derivative and convert the analog fitter with system function

$$H(s) = \frac{1}{s^2 + 16}$$
.

- (f) Explain the frequency sampling method of designing FIR filter.
- (g) Write notes on pipelining.
- (h) Explain the concept of extended parallelism.

 $(8 \times 5 = 40 \text{ marks})$

II. (a) State and prove the properties of DFT.

Or

- (b) Given $x(n) = \{0, 1, 2, 3\}$ find X(k) using DIT FFT algorithm.
- III. (a) Discuss the effects of "quantisation" and "rounding off" in the performance of digital filters.

Or

- (b) (i) Explain about limit cycle Oscillations.
 - (ii) A digital system is defined by the difference equation

$$y(n) = 0.9y(n-1) + x(n)$$
 with

x(n) = 0 and initial condition

 $y(\lambda) = 12$. Find the dead band of the system.

IV. (a) A low pass filter is to be designed with the following desired frequency response

$$H_d(e^{jw}) = \begin{cases} e - jw, & -\pi/4 \le w \le \pi/4 \\ 0 & \pi/4 < |w| \le \pi \end{cases}$$

Find the filter coefficients $\boldsymbol{h}_{d}\left(\boldsymbol{n}\right)$ if the window function is defined as

$$w(n) = \begin{cases} 1 & , & 0 \le n \le 4 \\ 0 & , & \text{otherwise} \end{cases}$$

Or

(b) Find H (z) using impulse invariant technique for the analog system function

H (s) =
$$\frac{1}{(s+0.5)(s^2+0.5s+2)}$$

V. (a) Explain briefly the computer architectures for signal processing.

Or

- (b) Explain briefly on:
 - (i) General purpose DSP processors.
 - (ii) FFT processors.

 $(4 \times 15 = 60 \text{ marks})$