(Pages: 2)

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE MARCH/APRIL 2012

IT/CS/PTCS 09 602—COMPILER DESIGN

(2009 Admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. What are the two parts of compilation? Explain briefly.
- 2. Write the regular definition for the following language:

"All strings of digits with no repeated digits".

- 3. What is Left recursion? Write the rules to eliminate left recursion.
- 4. What is the need for code optimization?
- 5. How do you calculate the cost of an instruction?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Explain the phases of the compiler in detail. Write down the output of each phase for the expression a := b + c * 50.
- 7. Show that the following grammar is ambiguous

 $S \longrightarrow aSbS/bSaS/$

For a sentence belonging to the above grammar:

- (i) Draw the parse tree.
- (ii) Construct the left-most and right-most derivations of "abab".
- 8. Write short notes on:
 - (i) Left factoring.

- (ii) Handle pruning.
- 9. Describe the process of translating Boolean Expression.
- 10. Explain the issues in the design of a code generator.
- 11. What do you mean by Peep-hole optimization? Explain.

 $(4 \times 5 = 20 \text{ marks})$

Part C

12. (a) With a neat diagram explain various phases of a compiler. List various compiler writing tools you know?

Or

(b) Construct a minimal DFA for (a/b)*(a/b) and write the algorithm for minimizing a DFA.

Turn over

C 26809

13. (a) (i) Check whether the following grammar is a LL(1) grammar.

 $S \rightarrow iEtS \mid iEtSeS \mid a$ $E \rightarrow b$

(4 marks)

(ii) Explain the first and follow procedures to construct a predictive parser.

(6 marks)

Or

- (b) Explain the operator precedence parsing algorithm
- 14. (a) Explain in detail about Run Time Storage Allocation.

Or

- (b) Explain about top-down and bottom up translation.
- 15. (a) Write the algorithm for constructing the DAG. Explain with Suitable example.

Oı

(b) What are the functions of a code generator? Write a simple code generator algorithm and show how it generates code for the statement A = B*c + B*C + D. Assume only 2 registers are available. What type of optimization can be done at this stage?

 $(4 \times 10 = 40 \text{ marks})$