Name...

Reg. N

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE B.MAY 2012

AI 09 604-ADVANCED CONTROL THEORY

(2009 Admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Draw the block diagram representation of the state equation.
- 2. Define a MIMO system.
- 3. List out different types of state space representations used.
- 4. Write the expressions of a PID controller transfer function.
- 5. Define 'definiteness'. What are different types of 'definiteness'?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Briefly describe the configuration of an observer.
- 7. The input-output relation of a sampled data system is described by the equation

$$y(k+2) + 5y(k+1) + 6y(k) = x(k+1) - x(k)$$
. Determine its pulse transfer function.

- 8. Explain state transition matrix of discrete time system.
- 9. What is PI controller and what are its effect on system performance?
- 10. Determine whether the following quadratic form is negative definite

$$V(x) = -x_1^2 - 3x_2^2 - 11x_3^2 + 2x_1x_2 - 4x_2x_3 - 2x_1x_3.$$

11. Briefly explain Direct method of Liapunov stability analysis.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

12. (A) Determine whether the following system is completely controllable and observable

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -0.8 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Or

- (B) Design a state feed back controller for the system $\dot{X} = \begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$ to place the poles at -1, -2.
- 13. (A) Obtain the solutions of homogeneous and non-homogeneous state equations.

Or

(B) Consider a discrete time unity feedback control system (sampling period T = 1 sec.) whose open loop pulse transfer function is given by

$$G(z) = \frac{K(0.3679z + 0.2642)}{(Z - 0.3679)(z - 1)}$$

Determine the range of gains 'K' for stability by use of Jury's stability test.

14. (A) What are different types of tuning techniques. Explain in detail.

Or

- (B) Explain P, PI, PID controllers and obtain their circuitry realizations.
- (A) (i) Briefly explain different types of definiteness with an example.
 - (ii) Consider the following system described by

$$\dot{x}_1 = x_2
 \dot{x}_2 = -x_1 - x_2$$

Determine the stability of the system by Liapunov method.

Or

- (B) Write short notes on :
 - Robust internal model control system.
 - (ii) Robust PID controlled systems.