Reg. No.......

COMBINED FIRST AND SECOND SEMESTER B.TECH, (ENGINEERING) DEGREE EXAMINATION, APRIL 2012

PTEN/EN09 101—ENGINEERING MATHEMATICS

Time: Three Hours

Maximum : 70 Marks

Part A

Answer all questions.

- 1. Give the formula for circle of curvature in Cartesian form.
- 2. What is Raabe's test? Define.
- 3. Find the eigenvalues of the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
- 4. Test whether $f(x) = |\cos x|$ is odd function or even function in the interval $(-\pi, \pi)$.
- 5. By using the sine series for f(x) = 1 in $0 < x < \pi$, show that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$ $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^{2n}.$
- 7. If "p" is the radius of curvature at any point (x, y) on the curve $y = \frac{ax}{a+x}$, show that $(2a)^{\frac{2}{3}}$ $(x)^2$ $(x)^2$

$$\left(\frac{2\rho}{a}\right)^{\frac{2}{3}} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2.$$

- 8. Give the extreme values of the function $f(x, y) = x^3y^2(12-x-y)$.
- 9. Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$

10. Verify Cayley–Hamilton theorem for matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
.

11. Expand
$$f(x) = \frac{1}{4} - x$$
, if $0 < x < \frac{1}{2}$

=
$$x - \frac{3}{4}$$
, if $\frac{1}{2} < x < 1$ as the Fourier series of sine terms.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer section (a) or section (b) of each question.

12. (a) Find
$$\frac{dx}{\sqrt{1-x^2}} + \frac{dy}{\sqrt{1-y^2}} + \frac{dz}{\sqrt{1-z^2}}$$
 if $x^2 + y^2 + z^2 - 2xyz = 1$.

Or

(b) Express
$$\iiint \sqrt{xyz(1-x-y-z)}dx \, dy \, dz$$
 in terms of u, v, w given that $x+y+z=u$, $y+z=uv$, $z=uvw$.

13. (a) Discuss the convergence of the series
$$x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \frac{4^4x^4}{4!} + \dots \infty$$

Or

(b) Test the series for conditional convergence

$$\frac{1}{2^3} - \frac{1}{3^3} (1+2) + \frac{1}{4^3} (1+2+3)$$
$$-\frac{1}{5^3} (1+2+3+4) + \dots + \infty.$$

14. (a) Reduce the quadratic form $2x_1^2 + 5x_2^2 + 3x_3^2 + 4x_1 x_2$ to canonical form by an orthogonal Transformation.

Or

(b) Find the eigenvalues of A and hence find
$$A^n$$
 (" n " is a positive integer), given that $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.

15. (a) Find a Fourier series to represent $x-x^2$ from $x=-\pi$ to $x=\pi$.

01

(b) Show that for $(-\pi < x < \pi)$, $\sin ax = \frac{2\sin(a\pi)}{\pi}$

$$\left(\frac{\sin x}{1^2 - a^2} - \frac{2\sin 2x}{2^2 - a^2} + \frac{3\sin 3x}{3^2 - a^2} - \dots\right).$$

 $(4 \times 10 = 40 \text{ marks})$