(Pages: 3)

Name: Name: BR

FIFTH SEMESTER B.TECH. (ENGINEERING) DEGREE DECEMBER 2011

CS 04 504—NUMERICAL ANALYSIS AND OPTIMIZATION TECHNIQUES

(2004 Admissions)

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

- I. (a) Using Newton-Raphson method, find the root between 0 and 1 of $x^3 = 6x 4$ correct to four decimal places.
 - (b) Find the value of y at x = 21 from the following data:—

x: 20

23

26

y: 0.3420 0.3907 0.4384 0.4848

- (c) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by (i) Trapezoidal rule; (ii) Simpson's $\frac{1}{3}$ rule.
- (d) Compute y at x = 0.25 by Modified Euler method, given y' = 2xy, y(0) = 1.
- (e) Solve the LPP using dual simplex method

Minimize
$$x_0 = 2x_1 + x_2$$

subject to $3x_1 + x_2 \ge 3$
 $4x_1 + 3x_2 \ge 6$

$$x_1 + 2x_2 \le 3$$

 $x_1, x_2 \ge 0.$

(f) Explain Charnes-M method.

(Entrem T)

(g) Find the starting solution of the following transportation model using Vogel's approximation method.

1	2	6	7
0	4	2	12
3	3 1		11
10	10	10	

(h) Discuss (i) Transportation problem; (ii) Assignment problem.

 $(8 \times 5 = 40 \text{ marks})$

Turn over

Part B

II. (a) (i) Find the positive root of $x - \cos x = 0$ by bisection method. (7 marks)

(ii) Solve the following system by using Gauss-Seidel method:

$$4x + 11y - z = 33$$

$$6x + 3y - 12z = 35$$
.

eximum: 100 Marks

(8 marks)

(b) (i) Using Newton's divided difference formula, find the values of f(2), f(8), given the following table:

x:	1. 4 0.8	0 5 SW	7001	10	11	13
y:	48	100	294	900	1210	2028

(8 marks)

(ii) Using Lagrange's interpolation formula, find y(10), from the following table:—

x:	5	6	9	11			
y : _	12	13	14	16	Magazi IV	th y	

(7 marks)

III. (a) The population of a certain town is given below. Find the rate of growth of the population in e) Solve the LPP using dual araples method 1931, 1941, 1961 and 1971.

Year x	1931	1941	1951	1961	1971
Polution in thousands y	40.62	60.80	79.95	103.56	132.65

(15 marks)

(b) (i) Given y' = x + y, y(0) = 1. Find y(0.1) using Runge-Kutta fourth order method.

(8 marks)

(ii) Find
$$y(2)$$
 if $y(x)$ is the solution of $\frac{dy}{dx} = \frac{1}{2}(x+y)$ given $y(0) = 2$, $y(0.5) = 2.636$ $y(1) = 3.595$ and $y(1.5) = 4.968$.

32 gull + 12

th. Discuss (i) True courtation problem:

(7 marks)

IV. (a) Solve by using simplex method

$$x_0 = 3x_1 + 2x_2 + 5x_3$$

(S x 5 = 40 marks)

TOTO STANK

$$x_1 + 2x_2 + x_3 \le 430$$

$$3x_1 + 2x_3 \le 460$$

$$x_1 + 4x_2 \le 420$$

$$x_1, x_2, x_3, \geq 0.$$

(15 marks)

(b) Solve by using Two-phase technique:

Minimize
$$x_0 = 4x_1 + x_2$$
subject to
$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 3$$

$$x_1, x_2 \ge 0$$
.

(15 marks)

V. (a) Solve the following transportation model by using:-

(i) North west corner rule; (ii) Least cost method and (iii) Vogel's approximation method. Compare the computation.

1	1	2	6	7
	0	4	2	12
1	3	1	5	11
Ī	10	10	10	9 200

(15 marks)

01

(b) Solve the following assignment problem for the maximum assignment.

$(C_{ij}) =$	8	7	9	9
	5	2	7	8
	6	1	4	9
	2	3	2	6

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$