| Director. |         |      | EGE     |
|-----------|---------|------|---------|
| D         | 23150   | //   | OLTIONA |
|           |         | 10   | 3       |
|           | SEVENTH | SEME | STER E  |
|           |         | 11 - | 101     |

(Pages: 4)

Reg. No.....

TECH. (ENGINEERING) DEGREE EXAMINATION DECEMBER 2011

EE 04 705 (B)

Time: Three Hours

ANALYSIS AND OPTIMIZATION TECHNIQUES

Maximum: 100 Marks

Part A Answer all questions.

Use the method of iteration to solve the equation  $x^3 + x^2 - 1 = 0$ .

30

Solve by Gauss-Jacobi iteration method solve correct to three decimal places, the system of equations.

$$x + 17y - 2z = 48$$

$$30x - 2y + 3z = 75$$

$$2x + 2y + 18z = 30$$

(c) The velocity V of a particle at distance from a point on its path is given below:

40

Use Simpson's rule to find approximately the time taken to traverse the distance 40 units.

- Find the value of y for x = 0.1 by Picard's method given that  $\frac{dy}{dx} = \frac{y x}{y + x}$ , y(0) = 1.
- (e) Use simplex method to

Maximize 
$$Z = 2x_1 - x_2 + x_3$$

subject to the constraints  $3x_1 + x_2 + x_3 \le 60$ 

$$x_1 - x_2 + 2x_3 \le 10$$

$$x_1 + x_2 - x_3 \le 20$$

and 
$$x_1, x_2, x_3 \ge 0$$
.

Use two phase simplex method to

Maximise 
$$Z = 10x_1 + 20x_2$$

subject to the constraints 
$$2x_1 + x_2 = 1$$

$$x_1 + 2x_2 = 5$$

$$x_1 \ge 0, x_2 \ge 0.$$

Turn over

(g) Solve the following transportation problem

|        |   | To |    |           |
|--------|---|----|----|-----------|
| From   | A | В  | C  | Available |
| I      | 6 | 8  | 4  | 14        |
| II     | 4 | 9  | 8  | 12        |
| III    | 1 | 2  | 6  | 5         |
| Demand | 6 | 10 | 15 | A - 11 1  |

(h). Solve the following Assignment Problem:

|   | 1  | 2  | 3  | 4  |
|---|----|----|----|----|
| A | 10 | 12 | 19 | 11 |
| В | 5  | 10 | 7  | 8  |
| C | 12 | 14 | 13 | 11 |
| D | 8  | 15 | 11 | 9  |

 $(8 \times 5 = 40 \text{ marks})$ 

Part B

II. (a) Find the real root of the following equations correct to three significant figures by Regula Falsi method

(i) 
$$x^3 - 9x + 1 = 0$$
.

(ii) 
$$x^3 - x^2 - 2 = 0$$
.

Or

(b) Solve by relaxation method to the nearest integer:

$$5x_1 - x_2 - x_3 - 3 = 0$$

$$-x_1 + 10x_2 - 2x_3 - 7 = 0$$

$$-x_1 - x_2 + 10x_3 - 8 = 0$$

and solve by relaxation method,

$$3x_1 + 9x_2 - 2x_3 = 11$$
  
 $4x_1 + 2x_2 + 13x_3 = 24$   
 $4x_1 - 4x_2 + 3x_3 = -8$ 

III. (a) Use the trapezoidal rule to evaluate the integral of y(x) from 0 to  $\frac{1}{2}$   $\pi$  from data below:

| x    | 9 | 0 | $\frac{\pi}{12}$ | $\frac{2\pi}{12}$ | $3\pi/12$ | $4\pi/12$ | $5\pi/12$ | $6\pi/12$ |
|------|---|---|------------------|-------------------|-----------|-----------|-----------|-----------|
| y(x) | 0 |   | .25882           |                   |           |           |           |           |

- (b) Given  $y'' = xy'^2 y^2$  with y(0) = 1, y'(0) = 0, Obtain the values of y(0.1) and y(0.2) to 3 decimal places using Taylor series method.
- IV. (a) Use two phase simplex method to:
  - (i) Maximize  $Z = 10x_1 + 20x_2$ subject to the constraints  $2x_1 + x_2 = 1$  $x_1 + 2x_2 = 5$  $x_1 \ge 0, x_2 \ge 0$ .
  - (ii) Minimize  $Z = x_1 + x_2$ subject to the constraints  $2x_1 + x_2 \ge 4$  $x_1 + 7x_2 \ge 7$  $x_1, x_2 \ge 0$ .

Or

- (b) Use dual simplex method to solve the following
  - (i) Minimize  $Z = x_1 + x_2$ subject to the constraints  $2x_1 + x_2 \ge 4$   $x_1 + 7x_2 \ge 7$  $x_1, x_2 \ge 0$ .
  - (ii) Maximize  $Z = -2x_1 x_2$ subject to the constraints  $3x_1 + x_2 \ge 3$   $4x_1 + 3x_2 \ge 6$   $x_1 + 2x_2 \ge 3$  $x_1, x_2 \ge 0$

## V. (a) Solve the following Assignment Problems

- (i) A [10 12 19 11] B 5 10 7 8 C 12 14 13 11 D 8 15 11 9
- (b)  $J_{1} \begin{bmatrix}
  M_{1} & M_{2} & M_{3} & M_{4} \\
  5 & 8 & 3 & 2 \\
  10 & 7 & 5 & 8 \\
  4 & 10 & 12 & 10 \\
  J_{4} & 8 & 6 & 9 & 4
  \end{bmatrix}$

Or

(b) Use dynamic programming to show that  $Z = P_1 \log P_1 + P_2 \log P_2 + ... P_n \log P_n$  and subject to constraints  $P_j \ge 0$   $P_1 + P_2 + ... + P_n = 1$  is a minimum when  $P_1 = P_2 = ... = P_n = \frac{1}{n}$ .

 $(4 \times 15 = 60 \text{ marks})$