23142

C CATIONAL PAGE	
	Name:
	Reg.No.

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2011

EC 04 705 D - SATELLITE COMMUNICATION SYSTEM (2004 Admission)

Time:	Three Hours		Maximum:	100	Marks

- I. (a) State the advantages and disadvantages of geosynchronous orbits.
 - (b) Briefly explain the look angles.
 - (c) Describe a foot print.
 - (d) Compare the features of fixed and mobile satellite service earth stations.
 - (e) What are the frequency bands used for satellite communications? Explain their advantages and disadvantages.
 - (f) Briefly explain the effective isotropic radiated power and equivalent noise temperature.
 - (g) Describe Preassignment and demand assignment.
 - (h) Discuss the draw backs of using FDM/FM modulation for satellite multiple-accessing systems.

 $(8 \times 5 = 40 \text{ Marks})$

II. (a) (i) State Keplers Laws.

- (6)
- (ii) How to determine the period, velocity and position of a satellite.
- (9)

(or)

- (b) Discuss the effect of earth's shape, heavenly bodies, atmospheric drag and radiation pressure on the satellite's orbit. (15)
- III. (a) With block diagram explain the telemetry, tracking and command system. (15)

(or)

(b) (i) What is a Payload? Explain.

(5)

(ii) Describe the structure and parameters of antenna and its feed.

(10)

IV. (a) (i) Briefly explain the noise considerations in the link design.

(7)

(ii) Complete the link budget for a satellite with the following parameters (8)

Up-Link:

1	Earth station transmitter output power at saturation, 2000 W	33 dbW
2	Earth station back-off loss	3 dB
3	Earth station branching and feeder losses	4 dB
4	Earth station transmit antenna gain	64 dB
5	Additional up-link atmospheric losses	0.6 dB